These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 33609864)
1. Phenylthiosemicarbazide-functionalized UiO-66-NH Tang J; Chen Y; Zhao M; Wang S; Zhang L J Hazard Mater; 2021 Jul; 413():125278. PubMed ID: 33609864 [TBL] [Abstract][Full Text] [Related]
2. Adenosine-functionalized UiO-66-NH Wang H; Wang S; Wang S; Tang J; Chen Y; Zhang L J Hazard Mater; 2022 Mar; 425():127771. PubMed ID: 34961630 [TBL] [Abstract][Full Text] [Related]
3. Engineering of UiO-66-NH Tang J; Chen Y; Wang S; Zhang L J Colloid Interface Sci; 2021 Nov; 601():272-282. PubMed ID: 34082232 [TBL] [Abstract][Full Text] [Related]
4. Design of Zr-MOFs by Introducing Multiple Ligands for Efficient and Selective Capturing of Pb(II) from Aqueous Solutions. Liu X; Fu L; Liu H; Zhang D; Xiong C; Wang S; Zhang L ACS Appl Mater Interfaces; 2023 Feb; 15(4):5974-5989. PubMed ID: 36649205 [TBL] [Abstract][Full Text] [Related]
5. Post-functionalization of UiO-66-NH Fu L; Wang S; Lin G; Zhang L; Liu Q; Fang J; Wei C; Liu G J Hazard Mater; 2019 Apr; 368():42-51. PubMed ID: 30665107 [TBL] [Abstract][Full Text] [Related]
6. Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water. Ahmadijokani F; Tajahmadi S; Bahi A; Molavi H; Rezakazemi M; Ko F; Aminabhavi TM; Arjmand M Chemosphere; 2021 Feb; 264(Pt 2):128466. PubMed ID: 33065327 [TBL] [Abstract][Full Text] [Related]
7. Selective removal of Hg(II) by UiO-66-NH Hu Y; Wang S; Zhang L; Yang F Environ Sci Pollut Res Int; 2023 Jan; 30(1):2283-2297. PubMed ID: 35931848 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of cellulose cotton-based UiO-66 MOFs for the removal of rhodamine B and Pb(II) metal ions from contaminated wastewater. Yang H; Zhang P; Zheng Q; Hameed MU; Raza S Int J Biol Macromol; 2023 Dec; 253(Pt 4):126986. PubMed ID: 37739285 [TBL] [Abstract][Full Text] [Related]
9. Graphene oxide-based novel MOF nanohybrid for synergic removal of Pb (II) ions from aqueous solutions: Simulation and adsorption studies. Singh S; U B; Kumar Naik TSS; Behera SK; Khan NA; Singh J; Singh L; Ramamurthy PC Environ Res; 2023 Jan; 216(Pt 4):114750. PubMed ID: 36370821 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of Pb(ii) adsorptive removal by incorporation of UiO-66-COOH into the magnetic graphitic carbon nitride nanosheets. Alvandi S; Hosseinifard M; Bababmoradi M RSC Adv; 2024 Mar; 14(13):8990-9002. PubMed ID: 38500627 [TBL] [Abstract][Full Text] [Related]
11. Adsorption of Cr(VI) on nano Uio-66-NH Wu S; Ge Y; Wang Y; Chen X; Li F; Xuan H; Li X Environ Technol; 2018 Aug; 39(15):1937-1948. PubMed ID: 28625105 [TBL] [Abstract][Full Text] [Related]
12. Design of l-Cysteine Functionalized UiO-66 MOFs for Selective Adsorption of Hg(II) in Aqueous Medium. Zhao M; Huang Z; Wang S; Zhang L; Zhou Y ACS Appl Mater Interfaces; 2019 Dec; 11(50):46973-46983. PubMed ID: 31746183 [TBL] [Abstract][Full Text] [Related]
13. Functionalized UiO-66-NH Wang T; Han L; Li X; Chen T; Wang S Front Chem; 2022; 10():962383. PubMed ID: 36118324 [TBL] [Abstract][Full Text] [Related]
14. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. Jamshidifard S; Koushkbaghi S; Hosseini S; Rezaei S; Karamipour A; Jafari Rad A; Irani M J Hazard Mater; 2019 Apr; 368():10-20. PubMed ID: 30658159 [TBL] [Abstract][Full Text] [Related]
15. New effective 3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin-based silica coated graphene oxide adsorbent for removal of Pb(II) from aqueous environment. Hassan AM; Wan Ibrahim WA; Bakar MB; Sanagi MM; Sutirman ZA; Nodeh HR; Mokhter MA J Environ Manage; 2020 Jan; 253():109658. PubMed ID: 31666209 [TBL] [Abstract][Full Text] [Related]
16. Facile preparation of amine -functionalized corn husk derived activated carbon for effective removal of selected heavy metals from battery recycling wastewater. Ismail MS; Yahya MD; Auta M; Obayomi KS Heliyon; 2022 May; 8(5):e09516. PubMed ID: 35663746 [TBL] [Abstract][Full Text] [Related]
17. Ultra-deep removal of Pb by functionality tuned UiO-66 framework: A combined experimental, theoretical and HSAB approach. Ali S; Zuhra Z; Ali S; Han Q; Ahmad M; Wang Z Chemosphere; 2021 Dec; 284():131305. PubMed ID: 34192663 [TBL] [Abstract][Full Text] [Related]
18. Efficient Selective Removal of Pb(II) by Using 6-Aminothiouracil-Modified Zr-Based Organic Frameworks: From Experiments to Mechanisms. Xiong C; Wang S; Hu P; Huang L; Xue C; Yang Z; Zhou X; Wang Y; Ji H ACS Appl Mater Interfaces; 2020 Feb; 12(6):7162-7178. PubMed ID: 31942788 [TBL] [Abstract][Full Text] [Related]
19. Facile immobilization of ethylenediamine tetramethylene-phosphonic acid into UiO-66 for toxic divalent heavy metal ions removal: An experimental and theoretical exploration. Yan Y; Chu Y; Khan MA; Xia M; Shi M; Zhu S; Lei W; Wang F Sci Total Environ; 2022 Feb; 806(Pt 3):150652. PubMed ID: 34610397 [TBL] [Abstract][Full Text] [Related]
20. Adsorption of Pb(II) ions from contaminated water by 1,2,3,4-butanetetracarboxylic acid-modified microcrystalline cellulose: Isotherms, kinetics, and thermodynamic studies. Hashem A; Fletcher AJ; Younis H; Mauof H; Abou-Okeil A Int J Biol Macromol; 2020 Dec; 164():3193-3203. PubMed ID: 32853617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]