BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33609907)

  • 21. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes.
    Park I; Tabelin CB; Seno K; Jeon S; Ito M; Hiroyoshi N
    Chemosphere; 2018 Aug; 205():414-425. PubMed ID: 29704849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carrier-microencapsulation of arsenopyrite using Al-catecholate complex: nature of oxidation products, effects on anodic and cathodic reactions, and coating stability under simulated weathering conditions.
    Park I; Tabelin CB; Seno K; Jeon S; Inano H; Ito M; Hiroyoshi N
    Heliyon; 2020 Jan; 6(1):e03189. PubMed ID: 31956714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thioarsenate formation upon dissolution of orpiment and arsenopyrite.
    Suess E; Planer-Friedrich B
    Chemosphere; 2012 Nov; 89(11):1390-8. PubMed ID: 22771176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micro-colonization of arsenic-resistant Staphylococcus sp. As-3 on arsenopyrite (FeAsS) drives arsenic mobilization under anoxic sub-surface mimicking conditions.
    Rathod J; Jean JS; Jiang WT; Huang IH; Liu BH; Lee YC
    Sci Total Environ; 2019 Jun; 669():527-539. PubMed ID: 30884274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.
    Karimian N; Burton ED; Johnston SG
    Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms.
    Deng S; Gu G; Wu Z; Xu X
    Chemosphere; 2017 Oct; 185():403-411. PubMed ID: 28710989
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ROS formation driven by pyrite-mediated arsenopyrite oxidation and its potential role on arsenic transformation.
    Zhou S; Gan M; Wang X; Zhang Y; Fang Y; Gu G; Wang Y; Qiu G
    J Hazard Mater; 2023 Feb; 443(Pt A):130151. PubMed ID: 36270187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rates of arsenopyrite oxidation by oxygen and Fe(III) at pH 1.8-12.6 and 15-45 degrees C.
    Yu Y; Zhu Y; Gao Z; Gammons CH; Li D
    Environ Sci Technol; 2007 Sep; 41(18):6460-4. PubMed ID: 17948794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogeochemistry of arsenic pollution in watersheds influenced by gold mining activities in Paracatu (Minas Gerais State, Brazil).
    Bidone E; Castilhos Z; Cesar R; Santos MC; Sierpe R; Ferreira M
    Environ Sci Pollut Res Int; 2016 May; 23(9):8546-55. PubMed ID: 26797944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arsenic pollution sources.
    Garelick H; Jones H; Dybowska A; Valsami-Jones E
    Rev Environ Contam Toxicol; 2008; 197():17-60. PubMed ID: 18982996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations.
    Murciego A; Alvarez-Ayuso E; Pellitero E; Rodríguez MA; García-Sánchez A; Tamayo A; Rubio J; Rubio F; Rubin J
    J Hazard Mater; 2011 Feb; 186(1):590-601. PubMed ID: 21130565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron.
    Mak MS; Lo IM
    Chemosphere; 2011 Jun; 84(2):234-40. PubMed ID: 21530997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arsenic and iron speciation and mobilization during phytostabilization of pyritic mine tailings.
    Hammond CM; Root RA; Maier RM; Chorover J
    Geochim Cosmochim Acta; 2020 Oct; 286():306-323. PubMed ID: 33071297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water chemistry impacts on arsenic mobilization from arsenopyrite dissolution and secondary mineral precipitation: implications for managed aquifer recharge.
    Neil CW; Yang YJ; Schupp D; Jun YS
    Environ Sci Technol; 2014 Apr; 48(8):4395-405. PubMed ID: 24621369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arsenic release from arsenopyrite oxidative dissolution in the presence of citrate under UV irradiation.
    Hong J; Liu L; Tan W; Qiu G
    Sci Total Environ; 2020 Jul; 726():138429. PubMed ID: 32305755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Fe(III) in preventing humic interference during As(III) detection on gold electrode: spectroscopic and voltammetric evidence.
    Liu ZG; Chen X; Jia Y; Liu JH; Huang XJ
    J Hazard Mater; 2014 Feb; 267():153-60. PubMed ID: 24440655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments.
    Xue Q; Ran Y; Tan Y; Peacock CL; Du H
    Chemosphere; 2019 Jun; 224():103-110. PubMed ID: 30818188
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal.
    Giasuddin AB; Kanel SR; Choi H
    Environ Sci Technol; 2007 Mar; 41(6):2022-7. PubMed ID: 17410800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biogeochemical transformations of arsenic in circumneutral freshwater sediments.
    Nicholas DR; Ramamoorthy S; Palace V; Spring S; Moore JN; Rosenzweig RF
    Biodegradation; 2003 Apr; 14(2):123-37. PubMed ID: 12877467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenopyrite dissolution in circumneutral oxic environments: The effect of pyrophosphate and dissolved Mn(III).
    Wang X; Shu Z; He H; Zhou M; Lu X; Wang J; Zhang L; Pan Z; Wang Z
    Water Res; 2023 Feb; 230():119595. PubMed ID: 36642031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.