BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33609993)

  • 1. Acoustic cavitation at low gas pressures in PZT-based ultrasonic systems.
    Mondal J; Li W; Rezk AR; Yeo LY; Lakkaraju R; Ghosh P; Ashokkumar M
    Ultrason Sonochem; 2021 May; 73():105493. PubMed ID: 33609993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sonochemical reactor characterization in the presence of cylindrical and conical reflectors.
    Ferkous H; Hamdaoui O; Pétrier C
    Ultrason Sonochem; 2023 Oct; 99():106556. PubMed ID: 37586183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents.
    Yamashita T; Ando K
    Ultrason Sonochem; 2019 Apr; 52():268-279. PubMed ID: 30573434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of pressure on the acoustic cavitation in saturated CO
    Gao H; Pei K; Hu G; Liu W; Meng A; Wang H; Shao H; Li W
    Ultrason Sonochem; 2022 Feb; 83():105934. PubMed ID: 35114553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning.
    Kang BK; Kim MS; Park JG
    Ultrason Sonochem; 2014 Jul; 21(4):1496-503. PubMed ID: 24529613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dissolved gases on sonochemical oxidation in a 20 kHz probe system: Continuous monitoring of dissolved oxygen concentration and sonochemical oxidation activity.
    Choi J; Son Y
    Ultrason Sonochem; 2023 Jul; 97():106452. PubMed ID: 37245263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of gas saturation and sparging on sonochemical oxidation activity in open and closed systems, Part I: H
    Son Y; Seo J
    Ultrason Sonochem; 2022 Nov; 90():106214. PubMed ID: 36327919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of liquid recirculation flow on sonochemical oxidation activity in a 28 kHz sonoreactor.
    Lee D; Na I; Son Y
    Chemosphere; 2022 Jan; 286(Pt 2):131780. PubMed ID: 34358887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of hemolytic and sonochemical activity of ultrasonic cavitation in a rotating tube.
    Miller DL; Thomas RM
    Ultrasound Med Biol; 1993; 19(1):83-90. PubMed ID: 8456532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolved gas and ultrasonic cavitation--a review.
    Rooze J; Rebrov EV; Schouten JC; Keurentjes JT
    Ultrason Sonochem; 2013 Jan; 20(1):1-11. PubMed ID: 22705074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards an understanding and control of cavitation activity in 1 MHz ultrasound fields.
    Hauptmann M; Struyf H; Mertens P; Heyns M; De Gendt S; Glorieux C; Brems S
    Ultrason Sonochem; 2013 Jan; 20(1):77-88. PubMed ID: 22705075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications.
    Yusof NS; Babgi B; Alghamdi Y; Aksu M; Madhavan J; Ashokkumar M
    Ultrason Sonochem; 2016 Mar; 29():568-76. PubMed ID: 26142078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sonochemical formation of peroxynitrite in water: Impact of ultrasonic frequency and power.
    Ferkous H; Hamdaoui O; Pétrier C
    Ultrason Sonochem; 2023 Aug; 98():106488. PubMed ID: 37343396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realization of cavitation fields based on the acoustic resonance modes in an immersion-type sonochemical reactor.
    Wang YC; Yao MC
    Ultrason Sonochem; 2013 Jan; 20(1):565-70. PubMed ID: 22959558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for predicting the number of active bubbles in sonochemical reactors.
    Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():51-8. PubMed ID: 25127247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental quantification of cavitation yield revisited: focus on high frequency ultrasound reactors.
    Kirpalani DM; McQuinn KJ
    Ultrason Sonochem; 2006 Jan; 13(1):1-5. PubMed ID: 16223678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An acoustic backscattering technique for the detection of transient cavitation produced by microsecond pulses of ultrasound.
    Roy RA; Madanshetty SI; Apfel RE
    J Acoust Soc Am; 1990 Jun; 87(6):2451-8. PubMed ID: 2373791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency and power dependence of ultrasonic degassing.
    Asakura Y; Yasuda K
    Ultrason Sonochem; 2022 Jan; 82():105890. PubMed ID: 34954631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.
    Liu HL; Hsieh CM
    Ultrason Sonochem; 2009 Mar; 16(3):431-8. PubMed ID: 18951828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic liquid metal processing: The essential role of cavitation bubbles in controlling acoustic streaming.
    Lebon GSB; Tzanakis I; Pericleous K; Eskin D; Grant PS
    Ultrason Sonochem; 2019 Jul; 55():243-255. PubMed ID: 30733147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.