These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33610029)

  • 1. Subject-specific rib finite element models with material data derived from coupon tests under bending loading.
    Yates KM; Agnew AM; Albert DL; Kemper AR; Untaroiu CD
    J Mech Behav Biomed Mater; 2021 Apr; 116():104358. PubMed ID: 33610029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detailed subject-specific FE rib modeling for fracture prediction.
    Iraeus J; Lundin L; Storm S; Agnew A; Kang YS; Kemper A; Albert D; Holcombe S; Pipkorn B
    Traffic Inj Prev; 2019; 20(sup2):S88-S95. PubMed ID: 31589083
    [No Abstract]   [Full Text] [Related]  

  • 3. Generic finite element models of human ribs, developed and validated for stiffness and strain prediction - To be used in rib fracture risk evaluation for the human population in vehicle crashes.
    Iraeus J; Brolin K; Pipkorn B
    J Mech Behav Biomed Mater; 2020 Jun; 106():103742. PubMed ID: 32250953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study.
    Li Z; Kindig MW; Kerrigan JR; Untaroiu CD; Subit D; Crandall JR; Kent RW
    J Biomech; 2010 Jan; 43(2):228-34. PubMed ID: 19875122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of rib structural responses under dynamic loadings using different material properties: A finite element analysis.
    Shen J; Roth S
    Med Eng Phys; 2022 Jul; 105():103820. PubMed ID: 35781384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-dependent factors affecting thoracic response: a finite element study focused on Japanese elderly occupants.
    Antona-Makoshi J; Yamamoto Y; Kato R; Sato F; Ejima S; Dokko Y; Yasuki T
    Traffic Inj Prev; 2015; 16 Suppl 1():S66-74. PubMed ID: 26027977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction.
    Li Z; Kindig MW; Subit D; Kent RW
    Med Eng Phys; 2010 Nov; 32(9):998-1008. PubMed ID: 20674456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sex, age, and two loading rates on the tensile material properties of human rib cortical bone.
    Katzenberger MJ; Albert DL; Agnew AM; Kemper AR
    J Mech Behav Biomed Mater; 2020 Feb; 102():103410. PubMed ID: 31655338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Human Rib Biomechanical Responses due to Three-Point Bending.
    Kalra A; Saif T; Shen M; Jin X; Zhu F; Begeman P; Yang KH; Millis S
    Stapp Car Crash J; 2015 Nov; 59():113-30. PubMed ID: 26660742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age- and sex-specific thorax finite element model development and simulation.
    Schoell SL; Weaver AA; Vavalle NA; Stitzel JD
    Traffic Inj Prev; 2015; 16 Suppl 1():S57-65. PubMed ID: 26027976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing FE human body model rib geometry to population data.
    Holcombe SA; Agnew AM; Derstine B; Wang SC
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2227-2239. PubMed ID: 32444978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting the numerical response and fracture location of the GHBMC M50 rib in dynamic anterior-posterior loading.
    Rampersadh C; Agnew AM; Malcolm S; Gierczycka D; Iraeus J; Cronin D
    J Mech Behav Biomed Mater; 2022 Dec; 136():105527. PubMed ID: 36306670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Contribution of Pre-impact Posture on Restrained Occupant Finite Element Model Response in Frontal Impact.
    Poulard D; Subit D; Nie B; Donlon JP; Kent RW
    Traffic Inj Prev; 2015; 16 Suppl 2():S87-95. PubMed ID: 26436247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element models of rib as an inhomogeneous beam structure under high-speed impacts.
    Niu Y; Shen W; Stuhmiller JH
    Med Eng Phys; 2007 Sep; 29(7):788-98. PubMed ID: 17045511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesh-morphing algorithms for specimen-specific finite element modeling.
    Sigal IA; Hardisty MR; Whyne CM
    J Biomech; 2008; 41(7):1381-9. PubMed ID: 18397789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of rib cortical bone compressive and tensile material properties: Trends with age, sex, and loading rate.
    Albert DL; Katzenberger MJ; Agnew AM; Kemper AR
    J Mech Behav Biomed Mater; 2021 Oct; 122():104668. PubMed ID: 34265671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element analysis for better evaluation of rib fractures: A pilot study.
    Bauman ZM; Herrmann S; Kött T; Binkley J; Evans CH; Kamien A; Cemaj S; Berning B; Cantrell E
    J Trauma Acute Care Surg; 2022 Dec; 93(6):767-773. PubMed ID: 36045490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigations of rib fracture failure models in different dynamic loading conditions.
    Wang F; Yang J; Miller K; Li G; Joldes GR; Doyle B; Wittek A
    Comput Methods Biomech Biomed Engin; 2016; 19(5):527-37. PubMed ID: 26214136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring of the Mechanism of Rib Fracture Caused by Landing on Different Parts of the Trunk after Falls from Height Using Finite Element Method.
    Hu WH; Shao Y; Li ZD; Zou DH; Zhang JH; Chen YJ; Wang HJ
    Fa Yi Xue Za Zhi; 2020 Apr; 36(2):181-186. PubMed ID: 32530164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Failed rib region prediction in a human body model during crash events with precrash braking.
    Guleyupoglu B; Koya B; Barnard R; Gayzik FS
    Traffic Inj Prev; 2018 Feb; 19(sup1):S37-S43. PubMed ID: 29584477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.