These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33610129)

  • 1. Structural protein fold recognition based on secondary structure and evolutionary information using machine learning algorithms.
    Qin X; Liu M; Zhang L; Liu G
    Comput Biol Chem; 2021 Apr; 91():107456. PubMed ID: 33610129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Succinylation Site Prediction Based on Protein Sequences Using the IFS-LightGBM (BO) Model.
    Zhang L; Liu M; Qin X; Liu G
    Comput Math Methods Med; 2020; 2020():8858489. PubMed ID: 33224267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting structural class for protein sequences of 40% identity based on features of primary and secondary structure using Random Forest algorithm.
    Apurva M; Mazumdar H
    Comput Biol Chem; 2020 Feb; 84():107164. PubMed ID: 31806243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A two-stage approach towards protein secondary structure classification.
    Ghosh KK; Ghosh S; Sen S; Sarkar R; Maulik U
    Med Biol Eng Comput; 2020 Aug; 58(8):1723-1737. PubMed ID: 32472446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving protein fold recognition using the amalgamation of evolutionary-based and structural based information.
    Paliwal KK; Sharma A; Lyons J; Dehzangi A
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S12. PubMed ID: 25521502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A protein structural classes prediction method based on predicted secondary structure and PSI-BLAST profile.
    Ding S; Li Y; Shi Z; Yan S
    Biochimie; 2014 Feb; 97():60-5. PubMed ID: 24067326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Composite Approach to Protein Tertiary Structure Prediction: Hidden Markov Model Based on Lattice.
    Peyravi F; Latif A; Moshtaghioun SM
    Bull Math Biol; 2019 Mar; 81(3):899-918. PubMed ID: 30536158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein fold recognition using HMM-HMM alignment and dynamic programming.
    Lyons J; Paliwal KK; Dehzangi A; Heffernan R; Tsunoda T; Sharma A
    J Theor Biol; 2016 Mar; 393():67-74. PubMed ID: 26801876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracting features from protein sequences to improve deep extreme learning machine for protein fold recognition.
    Ibrahim W; Abadeh MS
    J Theor Biol; 2017 May; 421():1-15. PubMed ID: 28351701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognizing and Predicting Thioether Bridges Formed by Lanthionine and β-Methyllanthionine in Lantibiotics Using a Random Forest Approach with Feature Selection.
    Wang S; Zhang YH; Zhang N; Chen L; Huang T; Cai YD
    Comb Chem High Throughput Screen; 2017; 20(7):582-593. PubMed ID: 28294058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DP-BINDER: machine learning model for prediction of DNA-binding proteins by fusing evolutionary and physicochemical information.
    Ali F; Ahmed S; Swati ZNK; Akbar S
    J Comput Aided Mol Des; 2019 Jul; 33(7):645-658. PubMed ID: 31123959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein fold classification with genetic algorithms and feature selection.
    Chen P; Liu C; Burge L; Mahmood M; Southerland W; Gloster C
    J Bioinform Comput Biol; 2009 Oct; 7(5):773-88. PubMed ID: 19785045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein Fold Recognition Based on Auto-Weighted Multi-View Graph Embedding Learning Model.
    Yan K; Wen J; Xu Y; Liu B
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2682-2691. PubMed ID: 32356759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A machine learning information retrieval approach to protein fold recognition.
    Cheng J; Baldi P
    Bioinformatics; 2006 Jun; 22(12):1456-63. PubMed ID: 16547073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical learning architecture with automatic feature selection for multiclass protein fold classification.
    Huang CD; Lin CT; Pal NR
    IEEE Trans Nanobioscience; 2003 Dec; 2(4):221-32. PubMed ID: 15376912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.
    Zheng C; Kurgan L
    BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of multiple machine learning algorithms for the classification of G-protein-coupled receptors using molecular evolution model-based feature extraction strategy.
    Ling C; Wei X; Shen Y; Zhang H
    Amino Acids; 2021 Nov; 53(11):1705-1714. PubMed ID: 34562175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning study of classifiers trained with biophysiochemical properties of amino acids to predict fibril forming Peptide motifs.
    Kumaran Nair SS; Subba Reddy NV; Hareesha KS
    Protein Pept Lett; 2012 Sep; 19(9):917-23. PubMed ID: 22486618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting protein fold types by the general form of Chou's pseudo amino acid composition: approached from optimal feature extractions.
    Liu L; Hu XZ; Liu XX; Wang Y; Li SB
    Protein Pept Lett; 2012 Apr; 19(4):439-49. PubMed ID: 22185500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.