BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 33610606)

  • 1. Metabolic engineering of Methylorubrum extorquens AM1 for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production using formate.
    Yoon J; Chang W; Oh SH; Choi SH; Yang YH; Oh MK
    Int J Biol Macromol; 2021 Apr; 177():284-293. PubMed ID: 33610606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of polyhydroxyalkanoate copolymers from methanol by Methylobacterium extorquens AM1 and the engineered strains under cobalt-deficient conditions.
    Orita I; Nishikawa K; Nakamura S; Fukui T
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3715-25. PubMed ID: 24430207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly-3-hydroxybutyrate production in acetate minimal medium using engineered Methylorubrum extorquens AM1.
    Yoon J; Bae J; Kang S; Cho BK; Oh MK
    Bioresour Technol; 2022 Jun; 353():127127. PubMed ID: 35398538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of Ralstonia eutropha for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose.
    Zhang YZ; Liu GM; Weng WQ; Ding JY; Liu SJ
    J Biotechnol; 2015 Feb; 195():82-8. PubMed ID: 25541463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Escherichia coli for the synthesis of polyhydroxyalkanoates using acetate as a main carbon source.
    Chen J; Li W; Zhang ZZ; Tan TW; Li ZJ
    Microb Cell Fact; 2018 Jul; 17(1):102. PubMed ID: 29970091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering NADH/NAD
    Ling C; Qiao GQ; Shuai BW; Olavarria K; Yin J; Xiang RJ; Song KN; Shen YH; Guo Y; Chen GQ
    Metab Eng; 2018 Sep; 49():275-286. PubMed ID: 30219528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of Escherichia coli for direct and modulated biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer using unrelated carbon sources.
    Srirangan K; Liu X; Tran TT; Charles TC; Moo-Young M; Chou CP
    Sci Rep; 2016 Nov; 6():36470. PubMed ID: 27819347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing and Engineering
    Lim CK; Villada JC; Chalifour A; Duran MF; Lu H; Lee PKH
    Front Microbiol; 2019; 10():1027. PubMed ID: 31143170
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid.
    Cha D; Ha HS; Lee SK
    Bioresour Technol; 2020 Aug; 309():123332. PubMed ID: 32305015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from unrelated carbon sources in engineered Rhodospirillum rubrum.
    Heinrich D; Raberg M; Steinbüchel A
    FEMS Microbiol Lett; 2015 Apr; 362(8):fnv038. PubMed ID: 25761750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing a predominant amount of 3-hydroxyvalerate by engineered Escherichia coli expressing propionate-CoA transferase.
    Yang YH; Brigham CJ; Song E; Jeon JM; Rha CK; Sinskey AJ
    J Appl Microbiol; 2012 Oct; 113(4):815-23. PubMed ID: 22788853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic-anaerobic transition boosts poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in Rhodospirillum rubrum: the key role of carbon dioxide.
    Godoy MS; de Miguel SR; Prieto MA
    Microb Cell Fact; 2023 Mar; 22(1):47. PubMed ID: 36899367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with modulated 3-hydroxyvalerate fraction by overexpressing acetolactate synthase in Cupriavidus necator H16.
    Jo YY; Park S; Gong G; Roh S; Yoo J; Ahn JH; Lee SM; Um Y; Kim KH; Ko JK
    Int J Biol Macromol; 2023 Jul; 242(Pt 4):125166. PubMed ID: 37270139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production and characterization of a biodegradable polymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), using the type II methanotroph, Methylocystis sp. MJC1.
    Lee OK; Kang SG; Choi TR; Yang YH; Lee EY
    Bioresour Technol; 2023 Dec; 389():129853. PubMed ID: 37813313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in metabolically recombinant Escherichia coli.
    Miao C; Meng D; Liu Y; Wang F; Chen L; Huang Z; Fan X; Gu P; Li Q
    Int J Biol Macromol; 2021 Dec; 193(Pt A):956-964. PubMed ID: 34751142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates.
    Park SJ; Jang YA; Lee H; Park AR; Yang JE; Shin J; Oh YH; Song BK; Jegal J; Lee SH; Lee SY
    Metab Eng; 2013 Nov; 20():20-8. PubMed ID: 23973656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV).
    Chen Y; Chen XY; Du HT; Zhang X; Ma YM; Chen JC; Ye JW; Jiang XR; Chen GQ
    Metab Eng; 2019 Jul; 54():69-82. PubMed ID: 30914380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial engineering of Methylorubrum extorquens AM1 to enhance CO
    Phan UT; Jeon BW; Kim YH
    Enzyme Microb Technol; 2023 Aug; 168():110264. PubMed ID: 37244213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxvalerate) from volatile fatty acids by Cupriavidus necator.
    Cai F; Lin M; Jin W; Chen C; Liu G
    J Basic Microbiol; 2023 Feb; 63(2):128-139. PubMed ID: 36192143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High natural PHA production from acetate in Cobetia sp. MC34 and Cobetia marina DSM 4741
    Christensen M; Jablonski P; Altermark B; Irgum K; Hansen H
    Microb Cell Fact; 2021 Dec; 20(1):225. PubMed ID: 34930259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.