These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 33610940)
1. Upgrading from batch to continuous flow process for the pyrolysis of sugarcane bagasse: Structural characterization of the biochars produced. Veiga PADS; Cerqueira MH; Gonçalves MG; Matos TTDS; Pantano G; Schultz J; Andrade JB; Mangrich AS J Environ Manage; 2021 May; 285():112145. PubMed ID: 33610940 [TBL] [Abstract][Full Text] [Related]
2. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products. Jeong CY; Dodla SK; Wang JJ Chemosphere; 2016 Jan; 142():4-13. PubMed ID: 26058554 [TBL] [Abstract][Full Text] [Related]
3. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. Domingues RR; Trugilho PF; Silva CA; Melo ICNA; Melo LCA; Magriotis ZM; Sánchez-Monedero MA PLoS One; 2017; 12(5):e0176884. PubMed ID: 28493951 [TBL] [Abstract][Full Text] [Related]
4. Effect of pyrolysis conditions on the total contents of polycyclic aromatic hydrocarbons in biochars produced from organic residues: Assessment of their hazard potential. De la Rosa JM; Sánchez-Martín ÁM; Campos P; Miller AZ Sci Total Environ; 2019 Jun; 667():578-585. PubMed ID: 30833256 [TBL] [Abstract][Full Text] [Related]
5. Energy-efficient biochar production for thermal backfill applications. Patwa D; Bordoloi U; Dubey AA; Ravi K; Sekharan S; Kalita P Sci Total Environ; 2022 Aug; 833():155253. PubMed ID: 35429570 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of exfoliated biochar from four agricultural feedstock. Roy S; Kumar U; Bhattacharyya P Environ Sci Pollut Res Int; 2019 Mar; 26(7):7272-7276. PubMed ID: 30661167 [TBL] [Abstract][Full Text] [Related]
7. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Lee Y; Park J; Ryu C; Gang KS; Yang W; Park YK; Jung J; Hyun S Bioresour Technol; 2013 Nov; 148():196-201. PubMed ID: 24047681 [TBL] [Abstract][Full Text] [Related]
8. Production and properties assessment of biochars from rapeseed and poplar waste biomass for environmental applications in Romania. Gheorghe-Bulmau C; Volceanov A; Stanciulescu I; Ionescu G; Marculescu C; Radoiu M Environ Geochem Health; 2022 Jun; 44(6):1683-1696. PubMed ID: 34414519 [TBL] [Abstract][Full Text] [Related]
9. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Ding W; Dong X; Ime IM; Gao B; Ma LQ Chemosphere; 2014 Jun; 105():68-74. PubMed ID: 24393563 [TBL] [Abstract][Full Text] [Related]
10. Valorization of underutilized waste biomass from invasive species to produce biochar for energy and other value-added applications. Ahmed A; Abu Bakar MS; Hamdani R; Park YK; Lam SS; Sukri RS; Hussain M; Majeed K; Phusunti N; Jamil F; Aslam M Environ Res; 2020 Jul; 186():109596. PubMed ID: 32361527 [TBL] [Abstract][Full Text] [Related]
11. Microwave-assisted production of CO Tang YH; Liu SH; Tsang DCW J Hazard Mater; 2020 Feb; 383():121192. PubMed ID: 31539661 [TBL] [Abstract][Full Text] [Related]
12. Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.). Angin D; Sensöz S Int J Phytoremediation; 2014; 16(7-12):684-93. PubMed ID: 24933878 [TBL] [Abstract][Full Text] [Related]
13. Preparation and Characterization of Biochars Obtained from Biomasses for Combustible Briquette Applications. Hadey C; Allouch M; Alami M; Boukhlifi F; Loulidi I ScientificWorldJournal; 2022; 2022():2554475. PubMed ID: 36523325 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. Huff MD; Kumar S; Lee JW J Environ Manage; 2014 Dec; 146():303-308. PubMed ID: 25190598 [TBL] [Abstract][Full Text] [Related]
15. Physical and chemical characterization of waste wood derived biochars. Yargicoglu EN; Sadasivam BY; Reddy KR; Spokas K Waste Manag; 2015 Feb; 36():256-68. PubMed ID: 25464942 [TBL] [Abstract][Full Text] [Related]
16. Biochar from anaerobically digested sugarcane bagasse. Inyang M; Gao B; Pullammanappallil P; Ding W; Zimmerman AR Bioresour Technol; 2010 Nov; 101(22):8868-72. PubMed ID: 20634061 [TBL] [Abstract][Full Text] [Related]
17. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils. Manolikaki II; Mangolis A; Diamadopoulos E J Environ Manage; 2016 Oct; 181():536-543. PubMed ID: 27429359 [TBL] [Abstract][Full Text] [Related]
18. Characterization and 2D structural model of corn straw and poplar leaf biochars. Zhao N; Lv Y; Yang X; Huang F; Yang J Environ Sci Pollut Res Int; 2018 Sep; 25(26):25789-25798. PubMed ID: 29270898 [TBL] [Abstract][Full Text] [Related]
19. Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation. Srinivasan P; Sarmah AK Sci Total Environ; 2015 Jan; 502():471-80. PubMed ID: 25290589 [TBL] [Abstract][Full Text] [Related]
20. Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Campos P; Miller AZ; Knicker H; Costa-Pereira MF; Merino A; De la Rosa JM Waste Manag; 2020 Mar; 105():256-267. PubMed ID: 32088572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]