These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33610965)

  • 21. Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum.
    Chen Q; Lin S; Yang C; Fan C; Ge H
    Ultrason Sonochem; 2017 Nov; 39():403-413. PubMed ID: 28732962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Grain size measurement by EBSD in complex hot deformed metal alloy microstructures.
    Mingard KP; Roebuck B; Bennett EG; Thomas M; Wynne BP; Palmiere EJ
    J Microsc; 2007 Sep; 227(Pt 3):298-308. PubMed ID: 17760627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of microstructure evolution and martensite transformation developed in austenitic stainless steel subjected to a plastic strain gradient: A combination study of Mirco-XRD, EBSD, and ECCI techniques.
    Berahmand M; Ketabchi M; Jamshidian M; Tsurekawa S
    Micron; 2021 Apr; 143():103014. PubMed ID: 33549854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional geometrical and topological characteristics of grains in conventional and grain boundary engineered 316L stainless steel.
    Liu T; Xia S; Zhou B; Bai Q; Rohrer GS
    Micron; 2018 Jun; 109():58-70. PubMed ID: 29665457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ observation of intergranular crack nucleation in a grain boundary controlled austenitic stainless steel.
    Rahimi S; Engelberg DL; Duff JA; Marrow TJ
    J Microsc; 2009 Mar; 233(3):423-31. PubMed ID: 19250463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of grain size on the microstructures and mechanical properties of 304 austenitic steel processed by torsional deformation.
    Gu J; Zhang L; Ni S; Song M
    Micron; 2018 Feb; 105():93-97. PubMed ID: 29245115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plan-view characterization of intergranular precipitates on grain boundaries by combination of FIB lift out method and TEM analyses: A case study in austenitic stainless steel.
    Sato K; Kaneko K; Hara T; Kawahara Y; Hamada JI; Takushima C; Teranishi R
    Micron; 2020 Nov; 138():102927. PubMed ID: 32905976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probabilistic approaches to compute uncertainty intervals and sensitivity factors of ultrasonic simulations of a weld inspection.
    Rupin F; Blatman G; Lacaze S; Fouquet T; Chassignole B
    Ultrasonics; 2014 Apr; 54(4):1037-46. PubMed ID: 24434115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling the Hydrogen Redistribution at the Grain Boundary of Misoriented Bicrystals in Austenite Stainless Steel.
    Yang F; Yan T; Zhang W; Zhang H; Zhao L
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correction of ultrasonic array images to improve reflector sizing and location in inhomogeneous materials using a ray-tracing model.
    Connolly GD; Lowe MJ; Temple JA; Rokhlin SI
    J Acoust Soc Am; 2010 May; 127(5):2802-12. PubMed ID: 21117730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EBSD Investigation of the Microtexture of Weld Metal and Base Metal in Laser Welded Al⁻Li Alloys.
    Cui L; Peng Z; Yuan X; He D; Chen L
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30477078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Level-Set Modeling of Grain Growth in 316L Stainless Steel under Different Assumptions Regarding Grain Boundary Properties.
    Murgas B; Flipon B; Bozzolo N; Bernacki M
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasonic signal enhancement for coarse grain materials by machine learning analysis.
    Xu W; Li X; Zhang J; Xue Z; Cao J
    Ultrasonics; 2021 Dec; 117():106550. PubMed ID: 34399134
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of copper grain size on laser ultrasonic backscattered signal.
    Zhang F; Zhang Y; Wang T; Zhang W; Gong P; Yin A
    Rev Sci Instrum; 2022 Aug; 93(8):084901. PubMed ID: 36050095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The propagation of ultrasound in an austenitic weld.
    Halkjaer S; Sorensen MP; Kristensen WD
    Ultrasonics; 2000 Mar; 38(1-8):256-61. PubMed ID: 10829670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micro-Texture Analyses of a Cold-Work Tool Steel for Additive Manufacturing.
    Kang JY; Yun J; Kim B; Choe J; Yang S; Park SJ; Yu JH; Kim YJ
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupling an ultrasonic propagation code with a model of the heterogeneity of multipass welds to simulate ultrasonic testing.
    Apfel A; Moysan J; Corneloup G; Fouquet T; Chassignole B
    Ultrasonics; 2005 May; 43(6):447-56. PubMed ID: 15823319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of low-strain thermo-mechanical processing on grain boundary network characteristics in type 304 austenitic stainless steel.
    Engelberg DL; Humphreys FJ; Marrow TJ
    J Microsc; 2008 Jun; 230(Pt 3):435-44. PubMed ID: 18503670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Microstructure and Mechanical Properties of Multi-Strand, Composite Welding-Wire Welded Joints of High Nitrogen Austenitic Stainless Steel.
    Li J; Li H; Liang Y; Liu P; Yang L
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31514393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EBSD and TEM investigation of the hot deformation substructure characteristics of a type 316L austenitic stainless steel.
    Cizek P; Whiteman JA; Rainforth WM; Beynon JH
    J Microsc; 2004 Mar; 213(3):285-95. PubMed ID: 15009696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.