These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33610991)

  • 1. How different are the arsenic fractions inhibit alkaline phosphatases on aggregates scale?
    Lu G; Tian H; Nurzhan A; Gu X; Liu C; Megharaj M; He W
    Sci Total Environ; 2021 Jun; 774():145728. PubMed ID: 33610991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The distribution of arsenic fractions and alkaline phosphatase activities in different soil aggregates following four months As(V) ageing.
    Lu G; Tian H; Wang Z; Li H; Mallavarapu M; He W
    Chemosphere; 2019 Dec; 236():124355. PubMed ID: 31325832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic efficiency is a better predictor of arsenic toxicity to soil alkaline phosphatase.
    Wang Z; Tian H; Lu G; Zhao Y; Yang R; Megharaj M; He W
    Ecotoxicol Environ Saf; 2018 Feb; 148():721-728. PubMed ID: 29175755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil enzyme kinetics indicate ecotoxicity of long-term arsenic pollution in the soil at field scale.
    Wang Z; Tian H; Lei M; Megharaj M; Tan X; Wang F; Jia H; He W
    Ecotoxicol Environ Saf; 2020 Mar; 191():110215. PubMed ID: 31978765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of Stabilizer Addition on Soil Arsenic Speciation and Investigation of Its Mechanism].
    Chen ZL; Zhao SH; Zhong SX; Sang YH; Jiang XL; Dai Y; Wang X
    Huan Jing Ke Xue; 2016 Jun; 37(6):2345-2352. PubMed ID: 29964906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic fractions and enzyme activities in arsenic-contaminated soils by groundwater irrigation in West Bengal.
    Bhattacharyya P; Tripathy S; Kim K; Kim SH
    Ecotoxicol Environ Saf; 2008 Sep; 71(1):149-56. PubMed ID: 17919724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil properties influence kinetics of soil acid phosphatase in response to arsenic toxicity.
    Wang Z; Tan X; Lu G; Liu Y; Naidu R; He W
    Ecotoxicol Environ Saf; 2018 Jan; 147():266-274. PubMed ID: 28850809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cycling and total risks of multiple As fractions in the Beijing-Tianjin-Hebei area on the agricultural plain, China.
    Cai K; Song Z
    Ecotoxicol Environ Saf; 2020 Mar; 190():110097. PubMed ID: 31887705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobility and distribution of arsenic in contaminated mine soils and its effects on the microbial pool.
    Marabottini R; Stazi SR; Papp R; Grego S; Moscatelli MC
    Ecotoxicol Environ Saf; 2013 Oct; 96():147-53. PubMed ID: 23856118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the application of Fe-Mn-La ternary oxide-biochar composites on the properties of arsenic-polluted paddy soil.
    Lin L; Gao M; Liu X; Song Z
    Environ Sci Process Impacts; 2020 Apr; 22(4):1045-1056. PubMed ID: 32149322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic availability in rice from a mining area: is amorphous iron oxide-bound arsenic a source or sink?
    Liu C; Yu HY; Liu C; Li F; Xu X; Wang Q
    Environ Pollut; 2015 Apr; 199():95-101. PubMed ID: 25638690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbes influence the fractionation of arsenic in paddy soils with different fertilization regimes.
    Li F; Zheng YM; He JZ
    Sci Total Environ; 2009 Apr; 407(8):2631-40. PubMed ID: 19155050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic contamination in abandoned and active gold mine spoils in Ghana: Geochemical fractionation, speciation, and assessment of the potential human health risk.
    Mensah AK; Marschner B; Shaheen SM; Wang J; Wang SL; Rinklebe J
    Environ Pollut; 2020 Jun; 261():114116. PubMed ID: 32220748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature enhances the affinity of soil alkaline phosphatase to Cd.
    Tan X; Machmuller MB; Wang Z; Li X; He W; Cotrufo MF; Shen W
    Chemosphere; 2018 Apr; 196():214-222. PubMed ID: 29304459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.
    Li Y; Li HG; Liu FC
    Environ Monit Assess; 2017 Jan; 189(1):34. PubMed ID: 28013473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-dependent effects of phosphate on arsenic speciation in paddy soils.
    Deng Y; Weng L; Li Y; Chen Y; Ma J
    Environ Pollut; 2020 Sep; 264():114783. PubMed ID: 32428817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plants increase arsenic in solution but decrease the non-specifically bound fraction in the rhizosphere of an alkaline, naturally rich soil.
    Obeidy C; Bravin MN; Bouchardon JL; Conord C; Moutte J; Guy B; Faure O
    Ecotoxicol Environ Saf; 2016 Apr; 126():23-29. PubMed ID: 26707185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractionation and mobility of thallium in areas impacted by mining-metallurgical activities: Identification of a water-soluble Tl(I) fraction.
    Cruz-Hernández Y; Ruiz-García M; Villalobos M; Romero FM; Meza-Figueroa D; Garrido F; Hernández-Alvarez E; Pi-Puig T
    Environ Pollut; 2018 Jun; 237():154-165. PubMed ID: 29482021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization and release risk of arsenic associated with partitioning and reactivity of iron oxide minerals in paddy soils.
    Ouyang X; Ma J; Weng L; Chen Y; Wei R; Zhao J; Ren Z; Peng H; Liao Z; Li Y
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36377-36390. PubMed ID: 32562227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.