These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33611207)

  • 21. [The effect of chromium removal by algae-bacteria Bostrychia calliptera (Rhodomelaceae) consortia under laboratory conditions].
    Rengifo-Gallego AL; Peña-Salamanca E; Benitez-Campo N
    Rev Biol Trop; 2012 Sep; 60(3):1055-64. PubMed ID: 23025079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Algal-bacterial processes for the treatment of hazardous contaminants: a review.
    Muñoz R; Guieysse B
    Water Res; 2006 Aug; 40(15):2799-815. PubMed ID: 16889814
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Algae-mediated removal of selected pharmaceutical and personal care products (PPCPs) from Lake Mead water.
    Bai X; Acharya K
    Sci Total Environ; 2017 Mar; 581-582():734-740. PubMed ID: 28089530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A whole sample toxicity assessment to evaluate the sub-lethal toxicity of water and sediment elutriates from a lake exposed to diffuse pollution.
    Abrantes N; Pereira R; de Figueiredo DR; Marques CR; Pereira MJ; Gonçalves F
    Environ Toxicol; 2009 Jun; 24(3):259-70. PubMed ID: 18655178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aquatic plants exposed to pharmaceuticals: effects and risks.
    Brain RA; Hanson ML; Solomon KR; Brooks BW
    Rev Environ Contam Toxicol; 2008; 192():67-115. PubMed ID: 18020304
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linking toxicity in algal and bacterial assays with chemical analysis in passive samplers deployed in 21 treated sewage effluents.
    Vermeirssen EL; Hollender J; Bramaz N; van der Voet J; Escher BI
    Environ Toxicol Chem; 2010 Nov; 29(11):2575-82. PubMed ID: 20853455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation.
    Subashchandrabose SR; Ramakrishnan B; Megharaj M; Venkateswarlu K; Naidu R
    Environ Int; 2013 Jan; 51():59-72. PubMed ID: 23201778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems.
    Bilal M; Iqbal HMN; Barceló D
    Sci Total Environ; 2019 Dec; 695():133896. PubMed ID: 31756868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Update on the cometabolism of organic pollutants by bacteria.
    Nzila A
    Environ Pollut; 2013 Jul; 178():474-82. PubMed ID: 23570949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements-A Review.
    Bilal M; Rasheed T; Sosa-Hernández JE; Raza A; Nabeel F; Iqbal HMN
    Mar Drugs; 2018 Feb; 16(2):. PubMed ID: 29463058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals.
    Edwards SJ; Kjellerup BV
    Appl Microbiol Biotechnol; 2013 Dec; 97(23):9909-21. PubMed ID: 24150788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Behavioural and physical effects of arsenic exposure in fish are aggravated by aquatic algae.
    Magellan K; Barral-Fraga L; Rovira M; Srean P; Urrea G; García-Berthou E; Guasch H
    Aquat Toxicol; 2014 Nov; 156():116-24. PubMed ID: 25190483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of pesticides on freshwater diatoms.
    Debenest T; Silvestre J; Coste M; Pinelli E
    Rev Environ Contam Toxicol; 2010; 203():87-103. PubMed ID: 19957117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants.
    Borde X; Guieysse B; Delgado O; Muñoz R; Hatti-Kaul R; Nugier-Chauvin C; Patin H; Mattiasson B
    Bioresour Technol; 2003 Feb; 86(3):293-300. PubMed ID: 12688473
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro bioassays reveal that additives are significant contributors to the toxicity of commercial household pesticides.
    van de Merwe JP; Neale PA; Melvin SD; Leusch FDL
    Aquat Toxicol; 2018 Jun; 199():263-268. PubMed ID: 29677588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties.
    Könnecker G; Regelmann J; Belanger S; Gamon K; Sedlak R
    Ecotoxicol Environ Saf; 2011 Sep; 74(6):1445-60. PubMed ID: 21550112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of flow intermittency and pharmaceutical exposure on the structure and metabolism of stream biofilms.
    Corcoll N; Casellas M; Huerta B; Guasch H; Acuña V; Rodríguez-Mozaz S; Serra-Compte A; Barceló D; Sabater S
    Sci Total Environ; 2015 Jan; 503-504():159-70. PubMed ID: 25017633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation of bisphenol A by an algal-bacterial system.
    Eio EJ; Kawai M; Niwa C; Ito M; Yamamoto S; Toda T
    Environ Sci Pollut Res Int; 2015 Oct; 22(19):15145-53. PubMed ID: 26013738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.
    Das S; Dash HR; Chakraborty J
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):2967-84. PubMed ID: 26860944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A model framework to describe growth-linked biodegradation of trace-level pollutants in the presence of coincidental carbon substrates and microbes.
    Liu L; Helbling DE; Kohler HP; Smets BF
    Environ Sci Technol; 2014 Nov; 48(22):13358-66. PubMed ID: 25321868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.