BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33611663)

  • 1. Molecular Evolution of rbcL in Orthotrichales (Bryophyta): Site Variation, Adaptive Evolution, and Coevolutionary Patterns of Amino Acid Replacements.
    Bernabeu M; Rosselló JA
    J Mol Evol; 2021 Jun; 89(4-5):225-237. PubMed ID: 33611663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns.
    Sen L; Fares MA; Liang B; Gao L; Wang B; Wang T; Su YJ
    Biol Direct; 2011 Jun; 6():29. PubMed ID: 21639885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular adaptation of rbcL in the heterophyllous aquatic plant Potamogeton.
    Iida S; Miyagi A; Aoki S; Ito M; Kadono Y; Kosuge K
    PLoS One; 2009; 4(2):e4633. PubMed ID: 19247501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco.
    Wang M; Kapralov MV; Anisimova M
    BMC Evol Biol; 2011 Sep; 11():266. PubMed ID: 21942934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in pyrenoid morphology are correlated with differences in the rbcL genes of members of the Chloromonas lineage (volvocales, chlorophyceae).
    Nozaki H; Onishi K; Morita E
    J Mol Evol; 2002 Oct; 55(4):414-30. PubMed ID: 12355262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive evolution of rbcL in Conocephalum (Hepaticae, bryophytes).
    Miwa H; Odrzykoski IJ; Matsui A; Hasegawa M; Akiyama H; Jia Y; Sabirov R; Takahashi H; Boufford DE; Murakami N
    Gene; 2009 Jul; 441(1-2):169-75. PubMed ID: 19100313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants.
    Yerramsetty P; Stata M; Siford R; Sage TL; Sage RF; Wong GK; Albert VA; Berry JO
    BMC Evol Biol; 2016 Jun; 16(1):141. PubMed ID: 27356975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding knowledge of the Rubisco kinetics variability in plant species: environmental and evolutionary trends.
    Galmés J; Kapralov MV; Andralojc PJ; Conesa MÀ; Keys AJ; Parry MA; Flexas J
    Plant Cell Environ; 2014 Sep; 37(9):1989-2001. PubMed ID: 24689692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Adaptive Evolution and Coevolution of
    Fangru N; Yuxin H; Xudong L; Jia F; Junping L; Qi L; Shulian X
    Evol Bioinform Online; 2020; 16():1176934320977862. PubMed ID: 33402814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widespread positive selection in the photosynthetic Rubisco enzyme.
    Kapralov MV; Filatov DA
    BMC Evol Biol; 2007 May; 7():73. PubMed ID: 17498284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lineage-specific variations of congruent evolution among DNA sequences from three genomes, and relaxed selective constraints on rbcL in Cryptomonas (Cryptophyceae).
    Hoef-Emden K; Tran HD; Melkonian M
    BMC Evol Biol; 2005 Oct; 5():56. PubMed ID: 16232313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rubisco evolution in C₄ eudicots: an analysis of Amaranthaceae sensu lato.
    Kapralov MV; Smith JA; Filatov DA
    PLoS One; 2012; 7(12):e52974. PubMed ID: 23285238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond RuBisCO: convergent molecular evolution of multiple chloroplast genes in C
    Casola C; Li J
    PeerJ; 2022; 10():e12791. PubMed ID: 35127287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positively selected amino acid replacements within the RuBisCO enzyme of oak trees are associated with ecological adaptations.
    Hermida-Carrera C; Fares MA; Fernández Á; Gil-Pelegrín E; Kapralov MV; Mir A; Molins A; Peguero-Pina JJ; Rocha J; Sancho-Knapik D; Galmés J
    PLoS One; 2017; 12(8):e0183970. PubMed ID: 28859145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in Rubisco kinetics during the evolution of C4 photosynthesis in Flaveria (Asteraceae) are associated with positive selection on genes encoding the enzyme.
    Kapralov MV; Kubien DS; Andersson I; Filatov DA
    Mol Biol Evol; 2011 Apr; 28(4):1491-503. PubMed ID: 21172830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kranz and single-cell forms of C4 plants in the subfamily Suaedoideae show kinetic C4 convergence for PEPC and Rubisco with divergent amino acid substitutions.
    Rosnow JJ; Evans MA; Kapralov MV; Cousins AB; Edwards GE; Roalson EH
    J Exp Bot; 2015 Dec; 66(22):7347-58. PubMed ID: 26417023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular adaptation in Rubisco: Discriminating between convergent evolution and positive selection using mechanistic and classical codon models.
    Parto S; Lartillot N
    PLoS One; 2018; 13(2):e0192697. PubMed ID: 29432438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular adaptation during adaptive radiation in the Hawaiian endemic genus Schiedea.
    Kapralov MV; Filatov DA
    PLoS One; 2006 Dec; 1(1):e8. PubMed ID: 17183712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear protein phylogenies support the monophyly of the three bryophyte groups (Bryophyta Schimp.).
    de Sousa F; Foster PG; Donoghue PCJ; Schneider H; Cox CJ
    New Phytol; 2019 Apr; 222(1):565-575. PubMed ID: 30411803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exceptionally high rates of positive selection on the rbcL gene in the genus Ilex (Aquifoliaceae).
    Yao X; Tan YH; Yang JB; Wang Y; Corlett RT; Manen JF
    BMC Evol Biol; 2019 Oct; 19(1):192. PubMed ID: 31638910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.