These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 33611914)

  • 21. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare.
    Trung TQ; Lee NE
    Adv Mater; 2016 Jun; 28(22):4338-72. PubMed ID: 26840387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors.
    Liu X; Liu D; Lee JH; Zheng Q; Du X; Zhang X; Xu H; Wang Z; Wu Y; Shen X; Cui J; Mai YW; Kim JK
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2282-2294. PubMed ID: 30582684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human-machine interfaces.
    Sim K; Rao Z; Zou Z; Ershad F; Lei J; Thukral A; Chen J; Huang QA; Xiao J; Yu C
    Sci Adv; 2019 Aug; 5(8):eaav9653. PubMed ID: 31414044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Challenges in Design and Fabrication of Flexible/Stretchable Carbon- and Textile-Based Wearable Sensors for Health Monitoring: A Critical Review.
    Heo JS; Hossain MF; Kim I
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32679666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design, Fabrication and Characterisation of Multi-Parameter Optical Sensors Dedicated to E-Skin Applications.
    Fliegans L; Troughton J; Divay V; Blayac S; Ramuz M
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parylene photonics: a flexible, broadband optical waveguide platform with integrated micromirrors for biointerfaces.
    Reddy JW; Lassiter M; Chamanzar M
    Microsyst Nanoeng; 2020; 6():85. PubMed ID: 34567695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Harnessing the Rheological Properties of Liquid Metals To Shape Soft Electronic Conductors for Wearable Applications.
    Hirsch A; Dejace L; Michaud HO; Lacour SP
    Acc Chem Res; 2019 Mar; 52(3):534-544. PubMed ID: 30714364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications.
    Lee J; Llerena Zambrano B; Woo J; Yoon K; Lee T
    Adv Mater; 2020 Feb; 32(5):e1902532. PubMed ID: 31495991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors.
    Kanoun O; Bouhamed A; Ramalingame R; Bautista-Quijano JR; Rajendran D; Al-Hamry A
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hybrid Integrated Photomedical Devices for Wearable Vital Sign Tracking.
    Bae SH; Kim D; Chang SY; Hur J; Kim H; Lee JW; Zhu B; Han TH; Choi C; Huffaker DL; Di Carlo D; Yang Y; Rim YS
    ACS Sens; 2020 Jun; 5(6):1582-1588. PubMed ID: 32233394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible and stretchable polymer optical fibers for chronic brain and vagus nerve optogenetic stimulations in free-behaving animals.
    Cao Y; Pan S; Yan M; Sun C; Huang J; Zhong C; Wang L; Yi L
    BMC Biol; 2021 Nov; 19(1):252. PubMed ID: 34819062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors.
    Lu Y; Biswas MC; Guo Z; Jeon JW; Wujcik EK
    Biosens Bioelectron; 2019 Jan; 123():167-177. PubMed ID: 30174272
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The era of nano-bionic: 2D materials for wearable and implantable body sensors.
    Silvestri A; Wetzl C; Alegret N; Cardo L; Hou HL; Criado A; Prato M
    Adv Drug Deliv Rev; 2022 Jul; 186():114315. PubMed ID: 35513130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wearable and Implantable Sensors for Biomedical Applications.
    Koydemir HC; Ozcan A
    Annu Rev Anal Chem (Palo Alto Calif); 2018 Jun; 11(1):127-146. PubMed ID: 29490190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monolithically integrated stretchable photonics.
    Li L; Lin H; Qiao S; Huang YZ; Li JY; Michon J; Gu T; Alosno-Ramos C; Vivien L; Yadav A; Richardson K; Lu N; Hu J
    Light Sci Appl; 2018; 7():17138. PubMed ID: 30839545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organic Photodetectors for Next-Generation Wearable Electronics.
    Chow PCY; Someya T
    Adv Mater; 2020 Apr; 32(15):e1902045. PubMed ID: 31373081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wearable and Implantable Soft Bioelectronics Using Two-Dimensional Materials.
    Choi C; Lee Y; Cho KW; Koo JH; Kim DH
    Acc Chem Res; 2019 Jan; 52(1):73-81. PubMed ID: 30586292
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Introduction to Photonics: Principles and the Most Recent Applications of Microstructures.
    Amiri IS; Azzuhri SRB; Jalil MA; Hairi HM; Ali J; Bunruangses M; Yupapin P
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of a Monolithic Lab-on-a-Chip Platform with Integrated Hydrogel Waveguides for Chemical Sensing.
    Torres-Mapa ML; Singh M; Simon O; Mapa JL; Machida M; Günther A; Roth B; Heinemann D; Terakawa M; Heisterkamp A
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.