BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33612179)

  • 1. Cancer incidence risks above and below 1 Gy for radiation protection in space.
    Hafner L; Walsh L; Schneider U
    Life Sci Space Res (Amst); 2021 Feb; 28():41-56. PubMed ID: 33612179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutron relative biological effectiveness for solid cancer incidence in the Japanese A-bomb survivors: an analysis considering the degree of independent effects from γ-ray and neutron absorbed doses with hierarchical partitioning.
    Walsh L
    Radiat Environ Biophys; 2013 Mar; 52(1):29-36. PubMed ID: 23161400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk coefficient for gamma-rays with regard to solid cancer.
    Kellerer AM; Walsh L; Nekolla EA
    Radiat Environ Biophys; 2002 Jun; 41(2):113-23. PubMed ID: 12201054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accounting for neutron exposure in the Japanese atomic bomb survivors.
    Cullings HM; Pierce DA; Kellerer AM
    Radiat Res; 2014 Dec; 182(6):587-98. PubMed ID: 25409123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the Relative Biological Effectiveness of Neutrons across Organs of Varying Depth among the Atomic Bomb Survivors.
    Cordova KA; Cullings HM
    Radiat Res; 2019 Aug; 192(4):380-387. PubMed ID: 31390313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutron relative biological effectiveness in Hiroshima and Nagasaki atomic bomb survivors: a critical review.
    Sasaki MS; Endo S; Hoshi M; Nomura T
    J Radiat Res; 2016 Nov; 57(6):583-595. PubMed ID: 27614201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical modeling approach to risk assessment for radiogenic leukemia among astronauts engaged in interplanetary space missions.
    Smirnova OA; Cucinotta FA
    Life Sci Space Res (Amst); 2018 Feb; 16():76-83. PubMed ID: 29475522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discussion of uncertainties and the impact of different neutron RBEs on all solid cancer radiation incidence risks obtained from the Japanese A-bomb survivor data.
    Hafner L; Walsh L; Rühm W
    Ann ICRP; 2023 Mar; 52(1-2):17-22. PubMed ID: 38143299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictions of space radiation fatality risk for exploration missions.
    Cucinotta FA; To K; Cacao E
    Life Sci Space Res (Amst); 2017 May; 13():1-11. PubMed ID: 28554504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer risk estimates from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy.
    Schneider U; Walsh L
    Radiat Environ Biophys; 2008 Apr; 47(2):253-63. PubMed ID: 18157543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the impact of neutron relative biological effectiveness on all solid cancer mortality risks in the Japanese atomic bomb survivors.
    Hafner L; Walsh L; Rühm W
    Int J Radiat Biol; 2024; 100(1):61-71. PubMed ID: 37772764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-targeted effects and space radiation risks for astronauts on multiple International Space Station and lunar missions.
    Cucinotta FA
    Life Sci Space Res (Amst); 2024 Feb; 40():166-175. PubMed ID: 38245342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lifetime radiation risk of stochastic effects - prospective evaluation for space flight or medicine.
    Ulanowski A; Kaiser JC; Schneider U; Walsh L
    Ann ICRP; 2020 Dec; 49(1_suppl):200-212. PubMed ID: 33054322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutron versus gamma-ray risk estimates. Inferences from the cancer incidence and mortality data in Hiroshima.
    Kellerer AM; Nekolla E
    Radiat Environ Biophys; 1997 Jun; 36(2):73-83. PubMed ID: 9271794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for determining weights for excess relative risk and excess absolute risk when applied in the calculation of lifetime risk of cancer from radiation exposure.
    Walsh L; Schneider U
    Radiat Environ Biophys; 2013 Mar; 52(1):135-45. PubMed ID: 23180110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo mixture model of lifetime cancer incidence risk from radiation exposure on shuttle and international space station.
    Peterson LE; Cucinotta FA
    Mutat Res; 1999 Dec; 430(2):327-35. PubMed ID: 10631348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of possible modifications to the DS86 dosimetry on neutron risk and relative biological effectiveness.
    Hunter N; Charles MW
    J Radiol Prot; 2002 Dec; 22(4):357-70. PubMed ID: 12546224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Updates to astronaut radiation limits: radiation risks for never-smokers.
    Cucinotta FA; Chappell LJ
    Radiat Res; 2011 Jul; 176(1):102-14. PubMed ID: 21574861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the impact of different neutron RBEs on the all solid cancer radiation risks obtained from the Japanese A-bomb survivors data.
    Hafner L; Walsh L; Rühm W
    Int J Radiat Biol; 2023; 99(4):629-643. PubMed ID: 36154910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer risk estimates for gamma-rays with regard to organ-specific doses. Part I: All solid cancers combined.
    Walsh L; Rühm W; Kellerer AM
    Radiat Environ Biophys; 2004 Sep; 43(3):145-51. PubMed ID: 15309386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.