BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33612211)

  • 1. Correlations between the solubility and surface characteristics of milk protein concentrate powder particles.
    Murayama D; Zhu Y; Ikeda S
    J Dairy Sci; 2021 Apr; 104(4):3916-3926. PubMed ID: 33612211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Storage induced changes to high protein powders: influence on surface properties and solubility.
    Fyfe KN; Kravchuk O; Le T; Deeth HC; Nguyen AV; Bhandari B
    J Sci Food Agric; 2011 Nov; 91(14):2566-75. PubMed ID: 21987424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal stability of reconstituted milk protein concentrates: Effect of partial calcium depletion during membrane filtration.
    Eshpari H; Jimenez-Flores R; Tong PS; Corredig M
    Food Res Int; 2017 Dec; 102():409-418. PubMed ID: 29195966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of adjusted pH prior to ultrafiltration of skim milk on membrane performance and physical functionality of milk protein concentrate.
    Luo X; Vasiljevic T; Ramchandran L
    J Dairy Sci; 2016 Feb; 99(2):1083-1094. PubMed ID: 26686705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the physical properties, solubility, and heat stability of milk protein concentrates prepared from partially acidified milk.
    Eshpari H; Tong PS; Corredig M
    J Dairy Sci; 2014 Dec; 97(12):7394-401. PubMed ID: 25459904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of processing methods and protein content of the concentrate on the properties of milk protein concentrate with 80% protein.
    Rupp LS; Molitor MS; Lucey JA
    J Dairy Sci; 2018 Sep; 101(9):7702-7713. PubMed ID: 29935826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial calcium depletion during membrane filtration affects gelation of reconstituted milk protein concentrates.
    Eshpari H; Jimenez-Flores R; Tong PS; Corredig M
    J Dairy Sci; 2015 Dec; 98(12):8454-63. PubMed ID: 26454287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manufacture of modified milk protein concentrate utilizing injection of carbon dioxide.
    Marella C; Salunke P; Biswas AC; Kommineni A; Metzger LE
    J Dairy Sci; 2015 Jun; 98(6):3577-89. PubMed ID: 25828657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of micellar casein concentrate and milk protein concentrate treated with transglutaminase in imitation cheese products-Unmelted texture.
    Salunke P; Marella C; Amamcharla JK; Muthukumarappan K; Metzger LE
    J Dairy Sci; 2022 Oct; 105(10):7891-7903. PubMed ID: 36055836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dipotassium phosphate and heat on milk protein beverage viscosity and color.
    Hoyt HM; Pranata J; Barbano DM; Drake M
    J Dairy Sci; 2023 Jun; 106(6):3884-3899. PubMed ID: 37105877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short communication: Effects of nanofiltration and evaporation on the physiochemical properties of milk protein during processing of milk protein concentrate.
    Cao J; Zhang W; Wu S; Liu C; Li Y; Li H; Zhang L
    J Dairy Sci; 2015 Jan; 98(1):100-5. PubMed ID: 25465557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified water solubility of milk protein concentrate powders through the application of static high pressure treatment.
    Udabage P; Puvanenthiran A; Yoo JA; Versteeg C; Augustin MA
    J Dairy Res; 2012 Feb; 79(1):76-83. PubMed ID: 22127220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of front-face fluorescence spectroscopy as a tool for monitoring changes in milk protein concentrate powders during storage.
    Babu KS; Amamcharla JK
    J Dairy Sci; 2018 Dec; 101(12):10844-10859. PubMed ID: 30316594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of micellar casein concentrate and milk protein concentrate treated with transglutaminase in imitation cheese products-Melt and stretch properties.
    Salunke P; Marella C; Amamcharla JK; Muthukumarappan K; Metzger LE
    J Dairy Sci; 2022 Oct; 105(10):7904-7916. PubMed ID: 36055846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pH and heat treatment conditions on physicochemical and acid gelation properties of liquid milk protein concentrate.
    Rafiee Tari N; Gaygadzhiev Z; Guri A; Wright A
    J Dairy Sci; 2021 Jun; 104(6):6609-6619. PubMed ID: 33773779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insolubility in milk protein concentrates: potential causes and strategies to minimize its occurrence.
    Khalesi M; FitzGerald RJ
    Crit Rev Food Sci Nutr; 2022; 62(25):6973-6989. PubMed ID: 33856251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the microstructure of milk protein concentrate powders during rehydration: alterations during storage.
    Mimouni A; Deeth HC; Whittaker AK; Gidley MJ; Bhandari BR
    J Dairy Sci; 2010 Feb; 93(2):463-72. PubMed ID: 20105518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of protein content and storage temperature on the particle morphology and flowability characteristics of milk protein concentrate powders.
    Babu KS; Siliveru K; Amamcharla JK; Vadlani PV; Ambrose RPK
    J Dairy Sci; 2018 Aug; 101(8):7013-7026. PubMed ID: 29778471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of soluble calcium and lactose on limiting flux and serum protein removal during skim milk microfiltration.
    Adams MC; Hurt EE; Barbano DM
    J Dairy Sci; 2015 Nov; 98(11):7483-97. PubMed ID: 26298759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel methods to study the effect of protein content and dissolution temperature on the solubility of milk protein concentrate: Focused beam reflectance and ultrasonic flaw detector-based methods.
    Hauser M; Amamcharla JK
    J Dairy Sci; 2016 May; 99(5):3334-3344. PubMed ID: 26947305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.