These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33612232)

  • 1. Type of teat cup liner and cluster ventilation affect vacuum conditions in the liner and milking performance in dairy cows.
    Holst GE; Adrion F; Umstätter C; Bruckmaier RM
    J Dairy Sci; 2021 Apr; 104(4):4775-4786. PubMed ID: 33612232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different vacuum levels, vacuum reduction during low milk flow, and different cluster detachment levels affect milking performance and teat condition in dairy cows.
    Stauffer C; Feierabend M; Bruckmaier RM
    J Dairy Sci; 2020 Oct; 103(10):9250-9260. PubMed ID: 32747105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced liner-open phase and vacuum instead of prestimulation increase parlor efficiency in dairy cows.
    Tuor M; Jenni B; Wellnitz O; Bruckmaier RM
    J Dairy Sci; 2022 Feb; 105(2):1533-1541. PubMed ID: 34955277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors affecting mouthpiece chamber vacuum in machine milking.
    Borkhus M; Rønningen O
    J Dairy Res; 2003 Aug; 70(3):283-8. PubMed ID: 12916822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for assessing teatcup liner performance during the peak milk flow period.
    Penry JF; Upton J; Leonardi S; Thompson PD; Reinemann DJ
    J Dairy Sci; 2018 Jan; 101(1):649-660. PubMed ID: 29102142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuum levels and milk-flow-dependent vacuum drops affect machine milking performance and teat condition in dairy cows.
    Besier J; Bruckmaier RM
    J Dairy Sci; 2016 Apr; 99(4):3096-3102. PubMed ID: 26830741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing liner performance using on-farm milk meters.
    Penry JF; Leonardi S; Upton J; Thompson PD; Reinemann DJ
    J Dairy Sci; 2016 Aug; 99(8):6609-6618. PubMed ID: 27236765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short communication: Effect of vacuum and ratio on the performance of a monoblock silicone milking liner.
    Spencer SB; Shin JW; Rogers GW; Cooper JB
    J Dairy Sci; 2007 Apr; 90(4):1725-8. PubMed ID: 17369212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review: Milking machine settings, teat condition and milking efficiency in dairy cows.
    Odorčić M; Rasmussen MD; Paulrud CO; Bruckmaier RM
    Animal; 2019 Jul; 13(S1):s94-s99. PubMed ID: 31280747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between dairy cows' hind leg activity and vacuum records during milking.
    Meyer D; Haeussermann A; Hartung E
    Animal; 2021 Apr; 15(4):100186. PubMed ID: 33637440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of a latency period between pre-stimulation and teat cup attachment and periodic vacuum reduction on milking characteristics and teat condition in dairy cows.
    Vetter A; van Dorland HA; Youssef M; Bruckmaier RM
    J Dairy Res; 2014 Feb; 81(1):107-12. PubMed ID: 24433587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in cow teat tissue created by two types of milking cluster.
    Hillerton JE; Ohnstad I; Baines JR; Leach KA
    J Dairy Res; 2000 Aug; 67(3):309-17. PubMed ID: 11037228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The milking machine as a cause of severe agitation in cows (and the farmer) during milking].
    Laevens H; Janssens A; de Kruif A; de Meulemeester L; Vandermeersch R
    Tijdschr Diergeneeskd; 1994 Sep; 119(17):495-9. PubMed ID: 7940464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of milkline vacuum, pulsator airline vacuum, and cluster weight on milk yield, teat condition, and udder health.
    Rasmussen MD; Madsen NP
    J Dairy Sci; 2000 Jan; 83(1):77-84. PubMed ID: 10659967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of flow-responsive pulsation on teat tissue condition and milking performance in Holstein dairy cows.
    Singh A; Spellman ME; Somula H; Wieland M
    J Dairy Sci; 2024 Sep; 107(9):7337-7351. PubMed ID: 38642649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood perfusion of teat tissue in dairy cows: Changes associated with pre-milking stimulation and machine milking.
    Wieland M; Shirky S; Gioia G; Sipka A; Virkler PD; Nydam DV; Älveby N; Porter IR
    J Dairy Sci; 2020 Jul; 103(7):6588-6599. PubMed ID: 32389482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mouthpiece chamber vacuum pattern indicates the cessation of milk flow and suits as an indicator to reduce teat end vacuum at a quarter level.
    Schlapbach K; Khatun M; Paulrud CO; Bruckmaier RM
    J Dairy Sci; 2024 Mar; 107(3):1778-1787. PubMed ID: 37806627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometry of milk liners affects milking performance in dairy cows.
    Herath HMGP; Kudrass D; Bryant RH; Al-Marashdeh O
    J Dairy Res; 2024 Sep; ():1-6. PubMed ID: 39282728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of liner design, pulsator setting, and vacuum level on bovine teat tissue changes and milking characteristics as measured by ultrasonography.
    Gleeson DE; O'Callaghan EJ; Rath MV
    Ir Vet J; 2004 May; 57(5):289-96. PubMed ID: 21851658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Milk flow-dependent vacuum loss in high-line milking systems: effects on milking characteristics and teat tissue condition.
    Ambord S; Bruckmaier RM
    J Dairy Sci; 2010 Aug; 93(8):3588-94. PubMed ID: 20655427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.