These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33612399)

  • 1. Transposon-Associated CRISPR-Cas System: A Powerful DNA Insertion Tool.
    Ma W; Xu YS; Sun XM; Huang H
    Trends Microbiol; 2021 Jul; 29(7):565-568. PubMed ID: 33612399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-guided DNA insertion with CRISPR-associated transposases.
    Strecker J; Ladha A; Gardner Z; Schmid-Burgk JL; Makarova KS; Koonin EV; Zhang F
    Science; 2019 Jul; 365(6448):48-53. PubMed ID: 31171706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The CRISPR-Cas system: beyond genome editing].
    Croteau FR; Rousseau GM; Moineau S
    Med Sci (Paris); 2018 Oct; 34(10):813-819. PubMed ID: 30451675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Engineered Cas-Transposon System for Programmable and Site-Directed DNA Transpositions.
    Chen SP; Wang HH
    CRISPR J; 2019 Dec; 2(6):376-394. PubMed ID: 31742433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Recent advances in CRISPR-related transposable elements].
    Ning S; Wu X; Luo Y
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4371-4384. PubMed ID: 36593183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous CRISPR-Cas mediated in situ genome editing: State-of-the-art and the road ahead for engineering prokaryotes.
    Liu Z; Liu J; Yang Z; Zhu L; Zhu Z; Huang H; Jiang L
    Biotechnol Adv; 2023 Nov; 68():108241. PubMed ID: 37633620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology.
    Zhang D; Li Z; Li JF
    J Genet Genomics; 2016 May; 43(5):251-62. PubMed ID: 27165865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon.
    Cheng F; Gong L; Zhao D; Yang H; Zhou J; Li M; Xiang H
    J Genet Genomics; 2017 Nov; 44(11):541-548. PubMed ID: 29169919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas Technology as a Revolutionary Genome Editing tool: Mechanisms and Biomedical Applications.
    Ebrahimi S; Khosravi MA; Raz A; Karimipoor M; Parvizi P
    Iran Biomed J; 2023 Sep; 27(5):219-46. PubMed ID: 37873636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CRISPR-Cas-associated transposon system for genome editing in
    Yap ZL; Rahman ASMZ; Hogan AM; Levin DB; Cardona ST
    Appl Environ Microbiol; 2024 Jul; 90(7):e0069924. PubMed ID: 38869300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering.
    Vo PLH; Ronda C; Klompe SE; Chen EE; Acree C; Wang HH; Sternberg SH
    Nat Biotechnol; 2021 Apr; 39(4):480-489. PubMed ID: 33230293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent trends in CRISPR-Cas system: genome, epigenome, and transcriptome editing and CRISPR delivery systems.
    Bae T; Hur JW; Kim D; Hur JK
    Genes Genomics; 2019 Aug; 41(8):871-877. PubMed ID: 31119685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-cas9 genome editing delivery systems for targeted cancer therapy.
    Ghaemi A; Bagheri E; Abnous K; Taghdisi SM; Ramezani M; Alibolandi M
    Life Sci; 2021 Feb; 267():118969. PubMed ID: 33385410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of different types of CRISPR/Cas-based systems in bacteria.
    Liu Z; Dong H; Cui Y; Cong L; Zhang D
    Microb Cell Fact; 2020 Sep; 19(1):172. PubMed ID: 32883277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing CRISPR-Cas9 for Genome Editing in Streptococcus pneumoniae D39V.
    Synefiaridou D; Veening JW
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33397704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic and diagnostic relevance of Crispr technology.
    El Ouar I; Djekoun A
    Biomed Pharmacother; 2021 Jun; 138():111487. PubMed ID: 33774312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.
    Zhang J; Zong W; Hong W; Zhang ZT; Wang Y
    Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Efficiency Genome Editing of Streptomyces Species by an Engineered CRISPR/Cas System.
    Wang Y; Cobb RE; Zhao H
    Methods Enzymol; 2016; 575():271-84. PubMed ID: 27417933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Footprint-free gene mutation correction in induced pluripotent stem cell (iPSC) derived from recessive dystrophic epidermolysis bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system.
    Itoh M; Kawagoe S; Tamai K; Nakagawa H; Asahina A; Okano HJ
    J Dermatol Sci; 2020 Jun; 98(3):163-172. PubMed ID: 32376152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tool for more specific DNA integration.
    Dhingra Y; Sashital DG
    Science; 2023 Nov; 382(6672):768-769. PubMed ID: 37972178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.