These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33613223)

  • 1. Intention Understanding in Human-Robot Interaction Based on Visual-NLP Semantics.
    Li Z; Mu Y; Sun Z; Song S; Su J; Zhang J
    Front Neurorobot; 2020; 14():610139. PubMed ID: 33613223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Human-Robot Collaboration through a Multi-Module Interaction Framework with Sensor Fusion: Object Recognition, Verbal Communication, User of Interest Detection, Gesture and Gaze Recognition.
    Paul SK; Nicolescu M; Nicolescu M
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Semantics of Gestural Instructions for Human-Robot Collaboration.
    Shukla D; Erkent Ö; Piater J
    Front Neurorobot; 2018; 12():7. PubMed ID: 29615888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A brain-inspired intention prediction model and its applications to humanoid robot.
    Zhao Y; Zeng Y
    Front Neurosci; 2022; 16():1009237. PubMed ID: 36340762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting Target Objects by Natural Language Instructions Using an RGB-D Camera.
    Bao J; Jia Y; Cheng Y; Tang H; Xi N
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human-Robot Interaction With Robust Prediction of Movement Intention Surpasses Manual Control.
    Veselic S; Zito C; Farina D
    Front Neurorobot; 2021; 15():695022. PubMed ID: 34658829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intention-Related Natural Language Grounding via Object Affordance Detection and Intention Semantic Extraction.
    Mi J; Liang H; Katsakis N; Tang S; Li Q; Zhang C; Zhang J
    Front Neurorobot; 2020; 14():26. PubMed ID: 32477091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forming We-intentions under breakdown situations in human-robot interactions.
    Guerrero E; Tewari M; Kalmi P; Lindgren H
    Comput Methods Programs Biomed; 2023 Dec; 242():107817. PubMed ID: 37813056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive and incremental learning of spatial object relations from human demonstrations.
    Kartmann R; Asfour T
    Front Robot AI; 2023; 10():1151303. PubMed ID: 37275214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning Actions From Natural Language Instructions Using an ON-World Embodied Cognitive Architecture.
    Giorgi I; Cangelosi A; Masala GL
    Front Neurorobot; 2021; 15():626380. PubMed ID: 34054452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Human Intention Prediction Approach Based on Fuzzy Rules through Wearable Sensing in Human-Robot Handover.
    Zou R; Liu Y; Li Y; Chu G; Zhao J; Cai H
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Understanding of Robot-Directed Speech Commands Using Sequence to Sequence With Noise Injection.
    Tada Y; Hagiwara Y; Tanaka H; Taniguchi T
    Front Robot AI; 2019; 6():144. PubMed ID: 33501159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The collaborative mind: intention reading and trust in human-robot interaction.
    Vinanzi S; Cangelosi A; Goerick C
    iScience; 2021 Feb; 24(2):102130. PubMed ID: 33659886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordinating Shared Tasks in Human-Robot Collaboration by Commands.
    Angleraud A; Mehman Sefat A; Netzev M; Pieters R
    Front Robot AI; 2021; 8():734548. PubMed ID: 34738018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Industrial Robot Control by Means of Gestures and Voice Commands in Off-Line and On-Line Mode.
    Kaczmarek W; Panasiuk J; Borys S; Banach P
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Handover Control for Human-Robot and Robot-Robot Collaboration.
    Costanzo M; De Maria G; Natale C
    Front Robot AI; 2021; 8():672995. PubMed ID: 34026858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ANEMONE: Theoretical Foundations for UX Evaluation of Action and Intention Recognition in Human-Robot Interaction.
    Lindblom J; Alenljung B
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32752008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot Learning of Assistive Manipulation Tasks by Demonstration via Head Gesture-based Interface.
    Kyrarini M; Zheng Q; Haseeb MA; Graser A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1139-1146. PubMed ID: 31374783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for human-driven robot comprehension of spatial descriptions by older adults in a robot fetch task.
    Carlson L; Skubic M; Miller J; Huo Z; Alexenko T
    Top Cogn Sci; 2014 Jul; 6(3):513-33. PubMed ID: 24948449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands.
    Mateo CM; Gil P; Torres F
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.