These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33613224)

  • 1. Self-Learning Event Mistiming Detector Based on Central Pattern Generator.
    Szadkowski R; Prágr M; Faigl J
    Front Neurorobot; 2021; 15():629652. PubMed ID: 33613224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-supervised learning of the biologically-inspired obstacle avoidance of hexapod walking robot.
    Čížek P; Faigl J
    Bioinspir Biomim; 2019 May; 14(4):046002. PubMed ID: 30995613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid learning mechanisms under a neural control network for various walking speed generation of a quadruped robot.
    Zhang Y; Thor M; Dilokthanakul N; Dai Z; Manoonpong P
    Neural Netw; 2023 Oct; 167():292-308. PubMed ID: 37666187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generic Neural Locomotion Control Framework for Legged Robots.
    Thor M; Kulvicius T; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):4013-4025. PubMed ID: 32833657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the role of sensory feedbacks in rowat-selverston CpG to improve robot legged locomotion.
    Amrollah E; Henaff P
    Front Neurorobot; 2010; 4():113. PubMed ID: 21228904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotion Control With Frequency and Motor Pattern Adaptations.
    Thor M; Strohmer B; Manoonpong P
    Front Neural Circuits; 2021; 15():743888. PubMed ID: 34899196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust and reusable self-organized locomotion of legged robots under adaptive physical and neural communications.
    Sun T; Dai Z; Manoonpong P
    Front Neural Circuits; 2023; 17():1111285. PubMed ID: 37063383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Spiking CPGs for Online Manipulation During Hexapod Walking.
    Strohmer B; Manoonpong P; Larsen LB
    Front Neurorobot; 2020; 14():41. PubMed ID: 32676022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Locomotion Control of a Hexapod Robot via Bio-Inspired Learning.
    Ouyang W; Chi H; Pang J; Liang W; Ren Q
    Front Neurorobot; 2021; 15():627157. PubMed ID: 33574748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensory feedback in CNN-based central pattern generators.
    Arena P; Fortuna L; Frasca M; Patane L
    Int J Neural Syst; 2003 Dec; 13(6):469-78. PubMed ID: 15031855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots.
    Nassour J; Hénaff P; Benouezdou F; Cheng G
    Biol Cybern; 2014 Jun; 108(3):291-303. PubMed ID: 24570353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach.
    Silva P; Matos V; Santos CP
    Biol Cybern; 2014 Feb; 108(1):103-19. PubMed ID: 24469319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General Distributed Neural Control and Sensory Adaptation for Self-Organized Locomotion and Fast Adaptation to Damage of Walking Robots.
    Miguel-Blanco A; Manoonpong P
    Front Neural Circuits; 2020; 14():46. PubMed ID: 32973461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A gecko-inspired robot with CPG-based neural control for locomotion and body height adaptation.
    Shao D; Wang Z; Ji A; Dai Z; Manoonpong P
    Bioinspir Biomim; 2022 Apr; 17(3):. PubMed ID: 35236786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous Online Adaptation of Bioinspired Adaptive Neuroendocrine Control for Autonomous Walking Robots.
    Homchanthanakul J; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1833-1845. PubMed ID: 34669583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matsuoka's CPG With Desired Rhythmic Signals for Adaptive Walking of Humanoid Robots.
    Wang Y; Xue X; Chen B
    IEEE Trans Cybern; 2020 Feb; 50(2):613-626. PubMed ID: 30307884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Workspace trajectory generation with smooth gait transition using CPG-based locomotion control for hexapod robot.
    Helal K; Albadin A; Albitar C; Alsaba M
    Heliyon; 2024 Jun; 10(11):e31847. PubMed ID: 38882328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central pattern generators evolved for real-time adaptation to rhythmic stimuli.
    Szorkovszky A; Veenstra F; Glette K
    Bioinspir Biomim; 2023 Jun; 18(4):. PubMed ID: 37339660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning Vision System for Quadruped Robot Gait Pattern Regulation.
    Cruz Ulloa C; Sánchez L; Del Cerro J; Barrientos A
    Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504177
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.