These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33613224)

  • 21. Hebbian Plasticity in CPG Controllers Facilitates Self-Synchronization for Human-Robot Handshaking.
    Jouaiti M; Caron L; Hénaff P
    Front Neurorobot; 2018; 12():29. PubMed ID: 29937725
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C; Kimura H; Takase K
    Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reproducing Five Motor Behaviors in a Salamander Robot With Virtual Muscles and a Distributed CPG Controller Regulated by Drive Signals and Proprioceptive Feedback.
    Knüsel J; Crespi A; Cabelguen JM; Ijspeert AJ; Ryczko D
    Front Neurorobot; 2020; 14():604426. PubMed ID: 33424576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.
    Bing Z; Cheng L; Chen G; Röhrbein F; Huang K; Knoll A
    Bioinspir Biomim; 2017 Apr; 12(3):035001. PubMed ID: 28375848
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motion Control of a Gecko-like Robot Based on a Central Pattern Generator.
    Han Q; Cao F; Yi P; Li T
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Turning and Radius Deviation Correction for a Hexapod Walking Robot Based on an Ant-Inspired Sensory Strategy.
    Zhu Y; Guo T; Liu Q; Zhu Q; Zhao X; Jin B
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On Slip Detection for Quadruped Robots.
    Nisticò Y; Fahmi S; Pallottino L; Semini C; Fink G
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smooth transition for CPG-based body shape control of a snake-like robot.
    Nor NM; Ma S
    Bioinspir Biomim; 2014 Mar; 9(1):016003. PubMed ID: 24343201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring Behaviors of Caterpillar-Like Soft Robots with a Central Pattern Generator-Based Controller and Reinforcement Learning.
    Ishige M; Umedachi T; Taniguchi T; Kawahara Y
    Soft Robot; 2019 Oct; 6(5):579-594. PubMed ID: 31107172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CPG-based generation strategy of variable rhythmic chewing movements for a dental testing chewing robot.
    Qin W; Cong M; Liu D; Ren X; Du Y
    Proc Inst Mech Eng H; 2022 May; 236(5):711-721. PubMed ID: 35266422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
    Liu C; Chen Q; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CPG-Based Gait Generation of the Curved-Leg Hexapod Robot with Smooth Gait Transition.
    Bai L; Hu H; Chen X; Sun Y; Ma C; Zhong Y
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31455002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion.
    Arena P; Fortuna L; Frasca M; Sicurella G
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1823-37. PubMed ID: 15462448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predictive and reactive tuning of the locomotor CPG.
    Prochazka A; Yakovenko S
    Integr Comp Biol; 2007 Oct; 47(4):474-81. PubMed ID: 21672856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A silicon central pattern generator controls locomotion in vivo.
    Vogelstein RJ; Tenore F; Guevremont L; Etienne-Cummings R; Mushahwar VK
    IEEE Trans Biomed Circuits Syst; 2008 Sep; 2(3):212-22. PubMed ID: 23852970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combining Evolutionary and Adaptive Control Strategies for Quadruped Robotic Locomotion.
    Massi E; Vannucci L; Albanese U; Capolei MC; Vandesompele A; Urbain G; Sabatini AM; Dambre J; Laschi C; Tolu S; Falotico E
    Front Neurorobot; 2019; 13():71. PubMed ID: 31555118
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biologically inspired adaptive walking of a quadruped robot.
    Kimura H; Fukuoka Y; Cohen AH
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):153-70. PubMed ID: 17148054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A physical model of sensorimotor interactions during locomotion.
    Klein TJ; Lewis MA
    J Neural Eng; 2012 Aug; 9(4):046011. PubMed ID: 22766556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.