These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 33613285)

  • 21. Role of Ectonucleotidases in Synapse Formation During Brain Development: Physiological and Pathological Implications.
    Grković I; Drakulić D; Martinović J; Mitrović N
    Curr Neuropharmacol; 2019; 17(1):84-98. PubMed ID: 28521702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purinergic signaling in kidney disease.
    Menzies RI; Tam FW; Unwin RJ; Bailey MA
    Kidney Int; 2017 Feb; 91(2):315-323. PubMed ID: 27780585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purinergic signalling in liver diseases: Pathological functions and therapeutic opportunities.
    Wang P; Jia J; Zhang D
    JHEP Rep; 2020 Dec; 2(6):100165. PubMed ID: 33103092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of an ecto-nucleoside diphosphokinase and its contribution to interconversion of P2 receptor agonists.
    Lazarowski ER; Homolya L; Boucher RC; Harden TK
    J Biol Chem; 1997 Aug; 272(33):20402-7. PubMed ID: 9252347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The P2X7 Receptor in Inflammatory Diseases: Angel or Demon?
    Savio LEB; de Andrade Mello P; da Silva CG; Coutinho-Silva R
    Front Pharmacol; 2018; 9():52. PubMed ID: 29467654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic fate of extracellular NAD in human skin fibroblasts.
    Aleo MF; Giudici ML; Sestini S; Danesi P; Pompucci G; Preti A
    J Cell Biochem; 2001; 80(3):360-6. PubMed ID: 11135366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of alkaline phosphatase: an emerging new drug target.
    al-Rashida M; Iqbal J
    Mini Rev Med Chem; 2015; 15(1):41-51. PubMed ID: 25694083
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Therapeutic potentials of ecto-nucleoside triphosphate diphosphohydrolase, ecto-nucleotide pyrophosphatase/phosphodiesterase, ecto-5'-nucleotidase, and alkaline phosphatase inhibitors.
    al-Rashida M; Iqbal J
    Med Res Rev; 2014 Jul; 34(4):703-43. PubMed ID: 24115166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coordinated regulation in human T cells of nucleotide-hydrolyzing ecto-enzymatic activities, including CD38 and PC-1. Possible role in the recycling of nicotinamide adenine dinucleotide metabolites.
    Deterre P; Gelman L; Gary-Gouy H; Arrieumerlou C; Berthelier V; Tixier JM; Ktorza S; Goding J; Schmitt C; Bismuth G
    J Immunol; 1996 Aug; 157(4):1381-8. PubMed ID: 8759717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extracellular Nucleotides Regulate Arterial Calcification by Activating Both Independent and Dependent Purinergic Receptor Signaling Pathways.
    Opdebeeck B; Orriss IR; Neven E; D'Haese PC; Verhulst A
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33076470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ecto-nucleotidase inhibitors: recent developments in drug discovery.
    Baqi Y
    Mini Rev Med Chem; 2015; 15(1):21-33. PubMed ID: 25694081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The role of ecto-purines in inflammation leading to demyelination - new means for therapies against multiple sclerosis].
    Cieślak M; Komoszyński M
    Neurol Neurochir Pol; 2011; 45(5):489-99. PubMed ID: 22127945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purinergic Signaling in Glioma Progression.
    Braganhol E; Wink MR; Lenz G; Battastini AMO
    Adv Exp Med Biol; 2020; 1202():87-108. PubMed ID: 32034710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesenchymal Stem Cells Ageing: Targeting the "Purinome" to Promote Osteogenic Differentiation and Bone Repair.
    Noronha-Matos JB; Correia-de-Sá P
    J Cell Physiol; 2016 Sep; 231(9):1852-61. PubMed ID: 26754327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Constitutive release of ATP and evidence for major contribution of ecto-nucleotide pyrophosphatase and nucleoside diphosphokinase to extracellular nucleotide concentrations.
    Lazarowski ER; Boucher RC; Harden TK
    J Biol Chem; 2000 Oct; 275(40):31061-8. PubMed ID: 10913128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ectonucleotidase inhibitors: targeting signaling pathways for therapeutic advancement-an in-depth review.
    Sharafat RH; Saeed A
    Purinergic Signal; 2024 Jul; ():. PubMed ID: 38958821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system.
    Zimmermann H
    Prog Neurobiol; 1996 Aug; 49(6):589-618. PubMed ID: 8912394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specificity of the ecto-ATPase inhibitor ARL 67156 on human and mouse ectonucleotidases.
    Lévesque SA; Lavoie EG; Lecka J; Bigonnesse F; Sévigny J
    Br J Pharmacol; 2007 Sep; 152(1):141-50. PubMed ID: 17603550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders.
    Henning RJ; Bourgeois M; Harbison RD
    Cardiovasc Toxicol; 2018 Dec; 18(6):493-506. PubMed ID: 29968072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities.
    Yegutkin GG
    Crit Rev Biochem Mol Biol; 2014; 49(6):473-97. PubMed ID: 25418535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.