These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33613299)

  • 21. Surface EMG shows distinct populations of muscle activity when measured during sustained sub-maximal exercise.
    Wakeling JM; Pascual SA; Nigg BM; von Tscharner V
    Eur J Appl Physiol; 2001 Nov; 86(1):40-7. PubMed ID: 11820321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Entrainment and phase shifting of circadian rhythms in mice by forced treadmill running.
    Marchant EG; Mistlberger RE
    Physiol Behav; 1996 Aug; 60(2):657-63. PubMed ID: 8840932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of Synchronization between Physiological Signals during Exercise: A Preliminary Investigation.
    Perry S; Khovanova N; Khovanov I
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():461-464. PubMed ID: 33018027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Step-adaptive sound guidance enhances locomotor-respiratory coupling in novice female runners: A proof-of-concept study.
    Harbour E; van Rheden V; Schwameder H; Finkenzeller T
    Front Sports Act Living; 2023; 5():1112663. PubMed ID: 36935883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury.
    Norton JA; Gorassini MA
    J Neurophysiol; 2006 Apr; 95(4):2580-9. PubMed ID: 16407422
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attenuation of the influence of cardiolocomotor coupling in heart rate variability interpretation during exercise test.
    Hernando A; Hernando D; Garatachea N; Casajus JA; Bailon R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1508-11. PubMed ID: 26736557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The two power limits conditioning step frequency in human running.
    Cavagna GA; Willems PA; Franzetti P; Detrembleur C
    J Physiol; 1991 Jun; 437():95-108. PubMed ID: 1890660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alignment strategies for the entrainment of music and movement rhythms.
    Moens B; Leman M
    Ann N Y Acad Sci; 2015 Mar; 1337():86-93. PubMed ID: 25773621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency peaks of tremor, muscle vibration and electromyographic activity at 10 Hz, 20 Hz and 40 Hz during human finger muscle contraction may reflect rhythmicities of central neural firing.
    McAuley JH; Rothwell JC; Marsden CD
    Exp Brain Res; 1997 May; 114(3):525-41. PubMed ID: 9187289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical entrainment of fictive locomotion in the decerebrate cat.
    Kriellaars DJ; Brownstone RM; Noga BR; Jordan LM
    J Neurophysiol; 1994 Jun; 71(6):2074-86. PubMed ID: 7931503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of stride frequency for walk-to-run transition in humans.
    Hansen EA; Kristensen LAR; Nielsen AM; Voigt M; Madeleine P
    Sci Rep; 2017 May; 7(1):2010. PubMed ID: 28515449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The apparently contradictory energetics of hopping and running: the counter-intuitive effect of constraints resolves the paradox.
    Gutmann AK; Bertram JE
    J Exp Biol; 2017 Jan; 220(Pt 2):167-170. PubMed ID: 27875261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motor units are recruited in a task-dependent fashion during locomotion.
    Wakeling JM
    J Exp Biol; 2004 Oct; 207(Pt 22):3883-90. PubMed ID: 15472019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coupling of cardiac and locomotor rhythms.
    Kirby RL; Nugent ST; Marlow RW; MacLeod DA; Marble AE
    J Appl Physiol (1985); 1989 Jan; 66(1):323-9. PubMed ID: 2917937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spontaneous Entrainment of Running Cadence to Music Tempo.
    Van Dyck E; Moens B; Buhmann J; Demey M; Coorevits E; Dalla Bella S; Leman M
    Sports Med Open; 2015; 1(1):15. PubMed ID: 26258007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run.
    Hunter I; Smith GA
    Eur J Appl Physiol; 2007 Aug; 100(6):653-61. PubMed ID: 17602239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reliability and variability of running economy in elite distance runners.
    Saunders PU; Pyne DB; Telford RD; Hawley JA
    Med Sci Sports Exerc; 2004 Nov; 36(11):1972-6. PubMed ID: 15514515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Running training and adaptive strategies of locomotor-respiratory coordination.
    McDermott WJ; Van Emmerik RE; Hamill J
    Eur J Appl Physiol; 2003 Jun; 89(5):435-44. PubMed ID: 12712351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rod Driven Frequency Entrainment and Resonance Phenomena.
    Salchow C; Strohmeier D; Klee S; Jannek D; Schiecke K; Witte H; Nehorai A; Haueisen J
    Front Hum Neurosci; 2016; 10():413. PubMed ID: 27588002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Faster top running speeds are achieved with greater ground forces not more rapid leg movements.
    Weyand PG; Sternlight DB; Bellizzi MJ; Wright S
    J Appl Physiol (1985); 2000 Nov; 89(5):1991-9. PubMed ID: 11053354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.