These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 33613480)
1. Plant Glycan Metabolism by Bifidobacteria. Kelly SM; Munoz-Munoz J; van Sinderen D Front Microbiol; 2021; 12():609418. PubMed ID: 33613480 [TBL] [Abstract][Full Text] [Related]
2. Galacto- and Fructo-oligosaccharides Utilized for Growth by Cocultures of Bifidobacterial Species Characteristic of the Infant Gut. Sims IM; Tannock GW Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220841 [TBL] [Abstract][Full Text] [Related]
3. Reconstruction of the Bifidobacterial Pan-Secretome Reveals the Network of Extracellular Interactions between Bifidobacteria and the Infant Gut. Lugli GA; Mancino W; Milani C; Duranti S; Turroni F; van Sinderen D; Ventura M Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29884754 [TBL] [Abstract][Full Text] [Related]
4. Genotyping and plant-derived glycan utilization analysis of Bifidobacterium strains from mother-infant pairs. Kan Z; Luo B; Cai J; Zhang Y; Tian F; Ni Y BMC Microbiol; 2020 Sep; 20(1):277. PubMed ID: 32912151 [TBL] [Abstract][Full Text] [Related]
5. Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes. Fushinobu S; Abou Hachem M Biochem Soc Trans; 2021 Apr; 49(2):563-578. PubMed ID: 33666221 [TBL] [Abstract][Full Text] [Related]
6. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Lewis ZT; Totten SM; Smilowitz JT; Popovic M; Parker E; Lemay DG; Van Tassell ML; Miller MJ; Jin YS; German JB; Lebrilla CB; Mills DA Microbiome; 2015; 3():13. PubMed ID: 25922665 [TBL] [Abstract][Full Text] [Related]
7. Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut. Liu S; Ren F; Zhao L; Jiang L; Hao Y; Jin J; Zhang M; Guo H; Lei X; Sun E; Liu H BMC Microbiol; 2015 Mar; 15():54. PubMed ID: 25887661 [TBL] [Abstract][Full Text] [Related]
8. Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach. Turroni F; Milani C; Duranti S; Mancabelli L; Mangifesta M; Viappiani A; Lugli GA; Ferrario C; Gioiosa L; Ferrarini A; Li J; Palanza P; Delledonne M; van Sinderen D; Ventura M ISME J; 2016 Jul; 10(7):1656-68. PubMed ID: 26859770 [TBL] [Abstract][Full Text] [Related]
9. In Vitro Fermentation of caprine milk oligosaccharides by bifidobacteria isolated from breast-fed infants. Thum C; Roy NC; McNabb WC; Otter DE; Cookson AL Gut Microbes; 2015; 6(6):352-63. PubMed ID: 26587678 [TBL] [Abstract][Full Text] [Related]
10. The role of mucin and oligosaccharides via cross-feeding activities by Bifidobacterium: A review. Luo Y; Xiao Y; Zhao J; Zhang H; Chen W; Zhai Q Int J Biol Macromol; 2021 Jan; 167():1329-1337. PubMed ID: 33202267 [TBL] [Abstract][Full Text] [Related]
11. Integrative genomic reconstruction of carbohydrate utilization networks in bifidobacteria: global trends, local variability, and dietary adaptation. Arzamasov AA; Rodionov DA; Hibberd MC; Guruge JL; Kazanov MD; Leyn SA; Kent JE; Sejane K; Bode L; Barratt MJ; Gordon JI; Osterman AL bioRxiv; 2024 Jul; ():. PubMed ID: 39005317 [TBL] [Abstract][Full Text] [Related]
12. Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics. Arzamasov AA; Osterman AL Crit Rev Biochem Mol Biol; 2022; 57(5-6):562-584. PubMed ID: 36866565 [TBL] [Abstract][Full Text] [Related]
13. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Milani C; Lugli GA; Duranti S; Turroni F; Mancabelli L; Ferrario C; Mangifesta M; Hevia A; Viappiani A; Scholz M; Arioli S; Sanchez B; Lane J; Ward DV; Hickey R; Mora D; Segata N; Margolles A; van Sinderen D; Ventura M Sci Rep; 2015 Oct; 5():15782. PubMed ID: 26506949 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of a Hydroxycinnamic Acid Esterase From the Kelly SM; O'Callaghan J; Kinsella M; van Sinderen D Front Microbiol; 2018; 9():2690. PubMed ID: 30473685 [No Abstract] [Full Text] [Related]
15. Two extracellular α-arabinofuranosidases are required for cereal-derived arabinoxylan metabolism by Friess L; Bottacini F; McAuliffe FM; O'Neill IJ; Cotter PD; Lee C; Munoz-Munoz J; van Sinderen D Gut Microbes; 2024; 16(1):2353229. PubMed ID: 38752423 [TBL] [Abstract][Full Text] [Related]
16. Carbohydrate metabolism in Bifidobacteria. Pokusaeva K; Fitzgerald GF; van Sinderen D Genes Nutr; 2011 Aug; 6(3):285-306. PubMed ID: 21484167 [TBL] [Abstract][Full Text] [Related]
17. Oligosaccharides Released from Milk Glycoproteins Are Selective Growth Substrates for Infant-Associated Bifidobacteria. Karav S; Le Parc A; Leite Nobrega de Moura Bell JM; Frese SA; Kirmiz N; Block DE; Barile D; Mills DA Appl Environ Microbiol; 2016 Jun; 82(12):3622-3630. PubMed ID: 27084007 [TBL] [Abstract][Full Text] [Related]
18. Complementary Mechanisms for Degradation of Inulin-Type Fructans and Arabinoxylan Oligosaccharides among Bifidobacterial Strains Suggest Bacterial Cooperation. Rivière A; Selak M; Geirnaert A; Van den Abbeele P; De Vuyst L Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29500265 [TBL] [Abstract][Full Text] [Related]
19. Bifidobacterium breve UCC2003 Employs Multiple Transcriptional Regulators To Control Metabolism of Particular Human Milk Oligosaccharides. James K; O'Connell Motherway M; Penno C; O'Brien RL; van Sinderen D Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29500268 [TBL] [Abstract][Full Text] [Related]
20. Arabinoxylan-based substrate preferences and predicted metabolic properties of Bifidobacterium longum subspecies as a basis to design differential media. Calvete-Torre I; Sabater C; Delgado S; Ruas-Madiedo P; Rupérez-García A; Montilla A; Javier Moreno F; Margolles A; Ruiz L Food Res Int; 2023 May; 167():112711. PubMed ID: 37087214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]