These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 33614232)

  • 1. Engineering highly efficient backsplicing and translation of synthetic circRNAs.
    Meganck RM; Liu J; Hale AE; Simon KE; Fanous MM; Vincent HA; Wilusz JE; Moorman NJ; Marzluff WF; Asokan A
    Mol Ther Nucleic Acids; 2021 Mar; 23():821-834. PubMed ID: 33614232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-Depth Analysis Reveals Production of Circular RNAs from Non-Coding Sequences.
    Robic A; Demars J; Kühn C
    Cells; 2020 Jul; 9(8):. PubMed ID: 32751504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient backsplicing produces translatable circular mRNAs.
    Wang Y; Wang Z
    RNA; 2015 Feb; 21(2):172-9. PubMed ID: 25449546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovative construction of the first reliable catalogue of bovine circular RNAs.
    Robic A; Hadlich F; Costa Monteiro Moreira G; Louise Clark E; Plastow G; Charlier C; Kühn C
    RNA Biol; 2024 Jan; 21(1):52-74. PubMed ID: 38989833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translation of Circular RNAs: Functions of Translated Products and Related Bioinformatics Approaches.
    Hwang JY; Kook TL; Paulus SM; Park JW
    Curr Bioinform; 2024; 19(1):3-13. PubMed ID: 38500957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of pig transcriptomes suggests a global regulation mechanism enabling temporary bursts of circular RNAs.
    Robic A; Faraut T; Djebali S; Weikard R; Feve K; Maman S; Kuehn C
    RNA Biol; 2019 Sep; 16(9):1190-1204. PubMed ID: 31120323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular RNA Splicing.
    Eger N; Schoppe L; Schuster S; Laufs U; Boeckel JN
    Adv Exp Med Biol; 2018; 1087():41-52. PubMed ID: 30259356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-Dependent Expression and Translation of Circular RNAs with Recombinant AAV Vectors In Vivo.
    Meganck RM; Borchardt EK; Castellanos Rivera RM; Scalabrino ML; Wilusz JE; Marzluff WF; Asokan A
    Mol Ther Nucleic Acids; 2018 Dec; 13():89-98. PubMed ID: 30245471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 360° view of circular RNAs: From biogenesis to functions.
    Wilusz JE
    Wiley Interdiscip Rev RNA; 2018 Jul; 9(4):e1478. PubMed ID: 29655315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Synthetic circRNAs for Efficient CNS Expression.
    Clements KN; Gonzalez TJ; Asokan A
    Methods Mol Biol; 2024; 2765():227-246. PubMed ID: 38381343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Survival Motor Neuron genes generate a vast repertoire of circular RNAs.
    Ottesen EW; Luo D; Seo J; Singh NN; Singh RN
    Nucleic Acids Res; 2019 Apr; 47(6):2884-2905. PubMed ID: 30698797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular RNAs as Therapeutic Agents and Targets.
    Holdt LM; Kohlmaier A; Teupser D
    Front Physiol; 2018; 9():1262. PubMed ID: 30356745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translation and functional roles of circular RNAs in human cancer.
    Lei M; Zheng G; Ning Q; Zheng J; Dong D
    Mol Cancer; 2020 Feb; 19(1):30. PubMed ID: 32059672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circular exonic RNAs: When RNA structure meets topology.
    Pervouchine DD
    Biochim Biophys Acta Gene Regul Mech; 2019; 1862(11-12):194384. PubMed ID: 31102674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular roles and function of circular RNAs in eukaryotic cells.
    Holdt LM; Kohlmaier A; Teupser D
    Cell Mol Life Sci; 2018 Mar; 75(6):1071-1098. PubMed ID: 29116363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative transcriptome sequencing reveals extensive alternative trans-splicing and cis-backsplicing in human cells.
    Chuang TJ; Chen YJ; Chen CY; Mai TL; Wang YD; Yeh CS; Yang MY; Hsiao YT; Chang TH; Kuo TC; Cho HH; Shen CN; Kuo HC; Lu MY; Chen YH; Hsieh SC; Chiang TW
    Nucleic Acids Res; 2018 Apr; 46(7):3671-3691. PubMed ID: 29385530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pervasive translation of circular RNAs driven by short IRES-like elements.
    Fan X; Yang Y; Chen C; Wang Z
    Nat Commun; 2022 Jun; 13(1):3751. PubMed ID: 35768398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepCIP: A multimodal deep learning method for the prediction of internal ribosome entry sites of circRNAs.
    Zhou Y; Wu J; Yao S; Xu Y; Zhao W; Tong Y; Zhou Z
    Comput Biol Med; 2023 Sep; 164():107288. PubMed ID: 37542919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Analysis of the Circular Transcriptome in Muscle, Liver, and Testis in Three Livestock Species.
    Robic A; Cerutti C; Kühn C; Faraut T
    Front Genet; 2021; 12():665153. PubMed ID: 34040640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IRESbase: A Comprehensive Database of Experimentally Validated Internal Ribosome Entry Sites.
    Zhao J; Li Y; Wang C; Zhang H; Zhang H; Jiang B; Guo X; Song X
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):129-139. PubMed ID: 32512182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.