BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 33614478)

  • 1. Enhancing the Efficacy of Tumor Vaccines Based on Immune Evasion Mechanisms.
    Chen J; Zhang H; Zhou L; Hu Y; Li M; He Y; Li Y
    Front Oncol; 2020; 10():584367. PubMed ID: 33614478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vaccines for established cancer: overcoming the challenges posed by immune evasion.
    van der Burg SH; Arens R; Ossendorp F; van Hall T; Melief CJ
    Nat Rev Cancer; 2016 Apr; 16(4):219-33. PubMed ID: 26965076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research progress of nanovaccine in anti-tumor immunotherapy.
    Yao M; Liu X; Qian Z; Fan D; Sun X; Zhong L; Wu P
    Front Oncol; 2023; 13():1211262. PubMed ID: 37692854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetics and immunotherapy: The current state of play.
    Dunn J; Rao S
    Mol Immunol; 2017 Jul; 87():227-239. PubMed ID: 28511092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells.
    Foy SP; Mandl SJ; dela Cruz T; Cote JJ; Gordon EJ; Trent E; Delcayre A; Breitmeyer J; Franzusoff A; Rountree RB
    Cancer Immunol Immunother; 2016 May; 65(5):537-49. PubMed ID: 26961085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy.
    Gao S; Yang D; Fang Y; Lin X; Jin X; Wang Q; Wang X; Ke L; Shi K
    Theranostics; 2019; 9(1):126-151. PubMed ID: 30662558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination Immunotherapy: Taking Cancer Vaccines to the Next Level.
    Grenier JM; Yeung ST; Khanna KM
    Front Immunol; 2018; 9():610. PubMed ID: 29623082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Immunotherapy in Targeting the Bone Marrow Microenvironment in Multiple Myeloma: An Evolving Therapeutic Strategy.
    Chung C
    Pharmacotherapy; 2017 Jan; 37(1):129-143. PubMed ID: 27870103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CCL21 Programs Immune Activity in Tumor Microenvironment.
    Sharma S; Kadam P; Dubinett S
    Adv Exp Med Biol; 2020; 1231():67-78. PubMed ID: 32060847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic Cancer Vaccine and Combinations With Antiangiogenic Therapies and Immune Checkpoint Blockade.
    Mougel A; Terme M; Tanchot C
    Front Immunol; 2019; 10():467. PubMed ID: 30923527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunotherapy in breast cancer: An overview of modern checkpoint blockade strategies and vaccines.
    Sanchez K; Page D; McArthur HL
    Curr Probl Cancer; 2016; 40(2-4):151-162. PubMed ID: 27855963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vaccine immunotherapy with ARNAX induces tumor-specific memory T cells and durable anti-tumor immunity in mouse models.
    Takeda Y; Yoshida S; Takashima K; Ishii-Mugikura N; Shime H; Seya T; Matsumoto M
    Cancer Sci; 2018 Jul; 109(7):2119-2129. PubMed ID: 29791768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective combinatorial immunotherapy for castration-resistant prostate cancer.
    Lu X; Horner JW; Paul E; Shang X; Troncoso P; Deng P; Jiang S; Chang Q; Spring DJ; Sharma P; Zebala JA; Maeda DY; Wang YA; DePinho RA
    Nature; 2017 Mar; 543(7647):728-732. PubMed ID: 28321130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From immune checkpoints to vaccines: The past, present and future of cancer immunotherapy.
    Osipov A; Murphy A; Zheng L
    Adv Cancer Res; 2019; 143():63-144. PubMed ID: 31202363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immune checkpoint Ab enhances the antigen-specific anti-tumor effects by modulating both dendritic cells and regulatory T lymphocytes.
    Sun NY; Chen YL; Lin HW; Chiang YC; Chang CF; Tai YJ; Chen CA; Sun WZ; Chien CL; Cheng WF
    Cancer Lett; 2019 Mar; 444():20-34. PubMed ID: 30543813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing T cell therapy by overcoming the immunosuppressive tumor microenvironment.
    Arina A; Corrales L; Bronte V
    Semin Immunol; 2016 Feb; 28(1):54-63. PubMed ID: 26872631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune checkpoint inhibitors in cancer therapy: a focus on T-regulatory cells.
    Sasidharan Nair V; Elkord E
    Immunol Cell Biol; 2018 Jan; 96(1):21-33. PubMed ID: 29359507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carboxyamidotriazole combined with IDO1-Kyn-AhR pathway inhibitors profoundly enhances cancer immunotherapy.
    Shi J; Chen C; Ju R; Wang Q; Li J; Guo L; Ye C; Zhang D
    J Immunother Cancer; 2019 Sep; 7(1):246. PubMed ID: 31511064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The main battlefield of mRNA vaccine - Tumor immune microenvironment.
    Li X; Ma S; Gao T; Mai Y; Song Z; Yang J
    Int Immunopharmacol; 2022 Dec; 113(Pt A):109367. PubMed ID: 36327875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Therapeutic gene modified cell based cancer vaccines.
    Kozłowska A; Mackiewicz J; Mackiewicz A
    Gene; 2013 Aug; 525(2):200-7. PubMed ID: 23566846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.