These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33614500)

  • 41. General and custom deep learning autosegmentation models for organs in head and neck, abdomen, and male pelvis.
    Amjad A; Xu J; Thill D; Lawton C; Hall W; Awan MJ; Shukla M; Erickson BA; Li XA
    Med Phys; 2022 Mar; 49(3):1686-1700. PubMed ID: 35094390
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Essentially unedited deep-learning-based OARs are suitable for rigorous oropharyngeal and laryngeal cancer treatment planning.
    Koo J; Caudell J; Latifi K; Moros EG; Feygelman V
    J Appl Clin Med Phys; 2024 Mar; 25(3):e14202. PubMed ID: 37942993
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Clinical Implementation of Automated Treatment Planning for Rectum Intensity-Modulated Radiotherapy Using Voxel-Based Dose Prediction and Post-Optimization Strategies.
    Zhong Y; Yu L; Zhao J; Fang Y; Yang Y; Wu Z; Wang J; Hu W
    Front Oncol; 2021; 11():697995. PubMed ID: 34249757
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A quality assurance framework for routine monitoring of deep learning cardiac substructure computed tomography segmentation models in radiotherapy.
    Jin X; Hao Y; Hilliard J; Zhang Z; Thomas MA; Li H; Jha AK; Hugo GD
    Med Phys; 2024 Apr; 51(4):2741-2758. PubMed ID: 38015793
    [TBL] [Abstract][Full Text] [Related]  

  • 46. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer.
    Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH
    Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prospective deployment of an automated implementation solution for artificial intelligence translation to clinical radiation oncology.
    Kehayias CE; Yan Y; Bontempi D; Quirk S; Bitterman DS; Bredfeldt JS; Aerts HJWL; Mak RH; Guthier CV
    Front Oncol; 2023; 13():1305511. PubMed ID: 38239639
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Clinical evaluation of deep learning-based automatic clinical target volume segmentation: a single-institution multi-site tumor experience.
    Hou Z; Gao S; Liu J; Yin Y; Zhang L; Han Y; Yan J; Li S
    Radiol Med; 2023 Oct; 128(10):1250-1261. PubMed ID: 37597126
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A dual deep neural network for auto-delineation in cervical cancer radiotherapy with clinical validation.
    Nie S; Wei Y; Zhao F; Dong Y; Chen Y; Li Q; Du W; Li X; Yang X; Li Z
    Radiat Oncol; 2022 Nov; 17(1):182. PubMed ID: 36380378
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Training and Validation of Deep Learning-Based Auto-Segmentation Models for Lung Stereotactic Ablative Radiotherapy Using Retrospective Radiotherapy Planning Contours.
    Wong J; Huang V; Giambattista JA; Teke T; Kolbeck C; Giambattista J; Atrchian S
    Front Oncol; 2021; 11():626499. PubMed ID: 34164335
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of Automatic Segmentation Model With Dosimetric Metrics for Radiotherapy of Esophageal Cancer.
    Zhu J; Chen X; Yang B; Bi N; Zhang T; Men K; Dai J
    Front Oncol; 2020; 10():564737. PubMed ID: 33117694
    [No Abstract]   [Full Text] [Related]  

  • 53. Automatic segmentation of organs-at-risks of nasopharynx cancer and lung cancer by cross-layer attention fusion network with TELD-Loss.
    Liu Z; Sun C; Wang H; Li Z; Gao Y; Lei W; Zhang S; Wang G; Zhang S
    Med Phys; 2021 Nov; 48(11):6987-7002. PubMed ID: 34608652
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Real-world validation of Artificial Intelligence-based Computed Tomography auto-contouring for prostate cancer radiotherapy planning.
    Palazzo G; Mangili P; Deantoni C; Fodor A; Broggi S; Castriconi R; Ubeira Gabellini MG; Del Vecchio A; Di Muzio NG; Fiorino C
    Phys Imaging Radiat Oncol; 2023 Oct; 28():100501. PubMed ID: 37920450
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automatic Radiotherapy Planning for Glioblastoma Radiotherapy With Sparing of the Hippocampus and nTMS-Defined Motor Cortex.
    Schuermann M; Dzierma Y; Nuesken F; Oertel J; Rübe C; Melchior P
    Front Neurol; 2021; 12():787140. PubMed ID: 35095732
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automatic delineation of the clinical target volume and organs at risk by deep learning for rectal cancer postoperative radiotherapy.
    Song Y; Hu J; Wu Q; Xu F; Nie S; Zhao Y; Bai S; Yi Z
    Radiother Oncol; 2020 Apr; 145():186-192. PubMed ID: 32044531
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Auto- versus human-driven plan in mediastinal Hodgkin lymphoma radiation treatment.
    Clemente S; Oliviero C; Palma G; D'Avino V; Liuzzi R; Conson M; Pacelli R; Cella L
    Radiat Oncol; 2018 Oct; 13(1):202. PubMed ID: 30340604
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pelvic U-Net: multi-label semantic segmentation of pelvic organs at risk for radiation therapy anal cancer patients using a deeply supervised shuffle attention convolutional neural network.
    Lempart M; Nilsson MP; Scherman J; Gustafsson CJ; Nilsson M; Alkner S; Engleson J; Adrian G; Munck Af Rosenschöld P; Olsson LE
    Radiat Oncol; 2022 Jun; 17(1):114. PubMed ID: 35765038
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center.
    D'Aviero A; Re A; Catucci F; Piccari D; Votta C; Piro D; Piras A; Di Dio C; Iezzi M; Preziosi F; Menna S; Quaranta F; Boschetti A; Marras M; Miccichè F; Gallus R; Indovina L; Bussu F; Valentini V; Cusumano D; Mattiucci GC
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897425
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intentional deep overfit learning for patient-specific dose predictions in adaptive radiotherapy.
    Maniscalco A; Liang X; Lin MH; Jiang S; Nguyen D
    Med Phys; 2023 Sep; 50(9):5354-5363. PubMed ID: 37459122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.