These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 33614650)

  • 1. Monocyte/Macrophage Lineage Cells From Fetal Erythromyeloid Progenitors Orchestrate Bone Remodeling and Repair.
    Yahara Y; Ma X; Gracia L; Alman BA
    Front Cell Dev Biol; 2021; 9():622035. PubMed ID: 33614650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erythromyeloid progenitors give rise to a population of osteoclasts that contribute to bone homeostasis and repair.
    Yahara Y; Barrientos T; Tang YJ; Puviindran V; Nadesan P; Zhang H; Gibson JR; Gregory SG; Diao Y; Xiang Y; Qadri YJ; Souma T; Shinohara ML; Alman BA
    Nat Cell Biol; 2020 Jan; 22(1):49-59. PubMed ID: 31907410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early hematopoiesis and macrophage development.
    McGrath KE; Frame JM; Palis J
    Semin Immunol; 2015 Dec; 27(6):379-87. PubMed ID: 27021646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interleukin-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the osteoclastogenic process.
    Hong H; Shi Z; Qiao P; Li H; McCoy EM; Mao P; Xu H; Feng X; Wang S
    Biochem Biophys Res Commun; 2013 Nov; 440(4):545-50. PubMed ID: 24103757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications.
    Bordukalo-Nikšić T; Kufner V; Vukičević S
    Front Immunol; 2022; 13():869422. PubMed ID: 35558080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The origins and roles of osteoclasts in bone development, homeostasis and repair.
    Yahara Y; Nguyen T; Ishikawa K; Kamei K; Alman BA
    Development; 2022 Apr; 149(8):. PubMed ID: 35502779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular matrix networks in bone remodeling.
    Alford AI; Kozloff KM; Hankenson KD
    Int J Biochem Cell Biol; 2015 Aug; 65():20-31. PubMed ID: 25997875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoclast fusion and regulation by RANKL-dependent and independent factors.
    Xing L; Xiu Y; Boyce BF
    World J Orthop; 2012 Dec; 3(12):212-22. PubMed ID: 23362465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts.
    Takeshita S; Kaji K; Kudo A
    J Bone Miner Res; 2000 Aug; 15(8):1477-88. PubMed ID: 10934646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis.
    Vi L; Baht GS; Whetstone H; Ng A; Wei Q; Poon R; Mylvaganam S; Grynpas M; Alman BA
    J Bone Miner Res; 2015 Jun; 30(6):1090-102. PubMed ID: 25487241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse.
    Cao JJ; Wronski TJ; Iwaniec U; Phleger L; Kurimoto P; Boudignon B; Halloran BP
    J Bone Miner Res; 2005 Sep; 20(9):1659-68. PubMed ID: 16059637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cord blood-derived macrophage-lineage cells rapidly stimulate osteoblastic maturation in mesenchymal stem cells in a glycoprotein-130 dependent manner.
    Fernandes TJ; Hodge JM; Singh PP; Eeles DG; Collier FM; Holten I; Ebeling PR; Nicholson GC; Quinn JM
    PLoS One; 2013; 8(9):e73266. PubMed ID: 24069182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Megakaryocyte production is sustained by direct differentiation from erythromyeloid progenitors in the yolk sac until midgestation.
    Iturri L; Freyer L; Biton A; Dardenne P; Lallemand Y; Gomez Perdiguero E
    Immunity; 2021 Jul; 54(7):1433-1446.e5. PubMed ID: 34062116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lymphoid-associated interleukin 7 receptor (IL7R) regulates tissue-resident macrophage development.
    Leung GA; Cool T; Valencia CH; Worthington A; Beaudin AE; Forsberg EC
    Development; 2019 Jul; 146(14):. PubMed ID: 31332039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of CSF-1 in bone and bone marrow development.
    Cecchini MG; Hofstetter W; Halasy J; Wetterwald A; Felix R
    Mol Reprod Dev; 1997 Jan; 46(1):75-83; discussion 83-4. PubMed ID: 8981367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fetal monocytes and the origins of tissue-resident macrophages.
    Hoeffel G; Ginhoux F
    Cell Immunol; 2018 Aug; 330():5-15. PubMed ID: 29475558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The generation of highly enriched osteoclast-lineage cell populations.
    Quinn JM; Whitty GA; Byrne RJ; Gillespie MT; Hamilton JA
    Bone; 2002 Jan; 30(1):164-70. PubMed ID: 11792580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification Of Erythromyeloid Progenitors And Their Progeny In The Mouse Embryo By Flow Cytometry.
    Iturri L; Saenz Coronilla J; Lallemand Y; Gomez Perdiguero E
    J Vis Exp; 2017 Jul; (125):. PubMed ID: 28745620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation sites and distribution of osteoclast progenitor cells during the ontogeny of the mouse.
    Thesingh CW
    Dev Biol; 1986 Sep; 117(1):127-34. PubMed ID: 3743892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoclast fusion is initiated by a small subset of RANKL-stimulated monocyte progenitors, which can fuse to RANKL-unstimulated progenitors.
    Levaot N; Ottolenghi A; Mann M; Guterman-Ram G; Kam Z; Geiger B
    Bone; 2015 Oct; 79():21-8. PubMed ID: 26008608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.