These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 33614650)

  • 41. Osteoclast derivation from mouse bone marrow.
    Tevlin R; McArdle A; Chan CK; Pluvinage J; Walmsley GG; Wearda T; Marecic O; Hu MS; Paik KJ; Senarath-Yapa K; Atashroo DA; Zielins ER; Wan DC; Weissman IL; Longaker MT
    J Vis Exp; 2014 Nov; (93):e52056. PubMed ID: 25407120
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Macrophage colony-stimulating factor pretreatment of bone marrow progenitor cells regulates osteoclast differentiation based upon the stage of myeloid development.
    Yang X; Pande S; Scott C; Friesel R
    J Cell Biochem; 2019 Aug; 120(8):12450-12460. PubMed ID: 30805994
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development, differentiation, and maturation of fetal mouse yolk sac macrophages in cultures.
    Naito M; Yamamura F; Nishikawa S; Takahashi K
    J Leukoc Biol; 1989 Jul; 46(1):1-10. PubMed ID: 2732624
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cathepsin K mRNA detection is restricted to osteoclasts during fetal mouse development.
    Dodds RA; Connor JR; Drake F; Feild J; Gowen M
    J Bone Miner Res; 1998 Apr; 13(4):673-82. PubMed ID: 9556067
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity.
    Martin TJ; Ng KW
    J Cell Biochem; 1994 Nov; 56(3):357-66. PubMed ID: 7876329
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selective signaling by Akt1 controls osteoblast differentiation and osteoblast-mediated osteoclast development.
    Mukherjee A; Rotwein P
    Mol Cell Biol; 2012 Jan; 32(2):490-500. PubMed ID: 22064480
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Epigenetic and transcriptional regulation of osteoclast differentiation.
    Kurotaki D; Yoshida H; Tamura T
    Bone; 2020 Sep; 138():115471. PubMed ID: 32526404
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Yolk sac, but not hematopoietic stem cell-derived progenitors, sustain erythropoiesis throughout murine embryonic life.
    Soares-da-Silva F; Freyer L; Elsaid R; Burlen-Defranoux O; Iturri L; Sismeiro O; Pinto-do-Ó P; Gomez-Perdiguero E; Cumano A
    J Exp Med; 2021 Apr; 218(4):. PubMed ID: 33566111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Osteoclast culture and resorption assays.
    Bradley EW; Oursler MJ
    Methods Mol Biol; 2008; 455():19-35. PubMed ID: 18463808
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rodent osteoblast-like cells support osteoclastic differentiation of human cord blood monocytes in the presence of M-CSF and 1,25 dihydroxyvitamin D3.
    Quinn JM; Fujikawa Y; McGee JO; Athanasou NA
    Int J Biochem Cell Biol; 1997 Jan; 29(1):173-9. PubMed ID: 9076952
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation.
    Häusler KD; Horwood NJ; Chuman Y; Fisher JL; Ellis J; Martin TJ; Rubin JS; Gillespie MT
    J Bone Miner Res; 2004 Nov; 19(11):1873-81. PubMed ID: 15476588
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis.
    Manolagas SC; Jilka RL
    N Engl J Med; 1995 Feb; 332(5):305-11. PubMed ID: 7816067
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The mechanism of osteoclast differentiation from macrophages: possible roles of T lymphocytes in osteoclastogenesis.
    Udagawa N
    J Bone Miner Metab; 2003; 21(6):337-43. PubMed ID: 14586789
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Embryonic hematopoiesis.
    Golub R; Cumano A
    Blood Cells Mol Dis; 2013 Dec; 51(4):226-31. PubMed ID: 24041595
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tissue-Resident Macrophage Development and Function.
    Wu Y; Hirschi KK
    Front Cell Dev Biol; 2020; 8():617879. PubMed ID: 33490082
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Signaling networks that control the lineage commitment and differentiation of bone cells.
    Soltanoff CS; Yang S; Chen W; Li YP
    Crit Rev Eukaryot Gene Expr; 2009; 19(1):1-46. PubMed ID: 19191755
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antagonistic role of vitamin D3 and retinoic acid on the differentiation of chicken hematopoietic macrophages into osteoclast precursor cells.
    Woods C; Domenget C; Solari F; Gandrillon O; Lazarides E; Jurdic P
    Endocrinology; 1995 Jan; 136(1):85-95. PubMed ID: 7828561
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of photobiomodulation on bone remodeling in an osteoblast-osteoclast co-culture system.
    Hong JU; Kwon JJ; Heo SC; Shin SH; Kim HJ; Lee JY
    Lasers Med Sci; 2022 Mar; 37(2):1049-1059. PubMed ID: 34142255
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanotopographical cues for regulation of macrophages and osteoclasts: emerging opportunities for osseointegration.
    He Y; Gao Y; Ma Q; Zhang X; Zhang Y; Song W
    J Nanobiotechnology; 2022 Dec; 20(1):510. PubMed ID: 36463225
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Polymethylmethacrylate-stimulated macrophages increase rat osteoclast precursor recruitment through their effect on osteoblasts in vitro.
    Pollice PF; Silverton SF; Horowitz SM
    J Orthop Res; 1995 May; 13(3):325-34. PubMed ID: 7602393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.