These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33614858)

  • 1. Measuring and compensating for ocular longitudinal chromatic aberration.
    Jiang X; Kuchenbecker JA; Touch P; Sabesan R
    Optica; 2019 Aug; 6(8):981-990. PubMed ID: 33614858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VioBio lab adaptive optics: technology and applications by women vision scientists.
    Marcos S; Benedí-García C; Aissati S; Gonzalez-Ramos AM; Lago CM; Radhkrishnan A; Romero M; Vedhakrishnan S; Sawides L; Vinas M
    Ophthalmic Physiol Opt; 2020 Mar; 40(2):75-87. PubMed ID: 32147855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses.
    Vinas M; Gonzalez-Ramos A; Dorronsoro C; Akondi V; Garzon N; Poyales F; Marcos S
    J Refract Surg; 2017 Nov; 33(11):736-742. PubMed ID: 29117412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation to the eye's chromatic aberration measured with an adaptive optics visual simulator.
    Fernandez EJ; Suchkov N; Artal P
    Opt Express; 2020 Dec; 28(25):37450-37458. PubMed ID: 33379579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Monochromatic and Chromatic Aberrations in Pseudophakic Patients.
    Marcos S; Romero M; Benedí-García C; González-Ramos A; Vinas M; Alejandre N; Jiménez-Alfaro I
    J Refract Surg; 2020 Apr; 36(4):230-238. PubMed ID: 32267953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achromatizing the human eye.
    Bradley A; Zhang XX; Thibos LN
    Optom Vis Sci; 1991 Aug; 68(8):608-16. PubMed ID: 1923337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye.
    Harmening WM; Tiruveedhula P; Roorda A; Sincich LC
    Biomed Opt Express; 2012 Sep; 3(9):2066-77. PubMed ID: 23024901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polychromatic Image Performance of Diffractive Bifocal Intraocular Lenses: Longitudinal Chromatic Aberration and Energy Efficiency.
    Millán MS; Vega F; Ríos-López I
    Invest Ophthalmol Vis Sci; 2016 Apr; 57(4):2021-8. PubMed ID: 27100158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Objective measurement of the off-axis longitudinal chromatic aberration in the human eye.
    Rynders MC; Navarro R; Losada MA
    Vision Res; 1998 Feb; 38(4):513-22. PubMed ID: 9536375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of Longitudinal Chromatic Aberration in the Last Crystalline Lens Surface Using Hartmann Test and Purkinje Images.
    Calderon-Uribe U; Hernandez-Gomez G; Gomez-Vieyra A
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imperfect optics may be the eye's defence against chromatic blur.
    McLellan JS; Marcos S; Prieto PM; Burns SA
    Nature; 2002 May; 417(6885):174-6. PubMed ID: 12000960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transverse chromatic aberration across the visual field of the human eye.
    Winter S; Sabesan R; Tiruveedhula P; Privitera C; Unsbo P; Lundström L; Roorda A
    J Vis; 2016 Nov; 16(14):9. PubMed ID: 27832270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.
    Zhai Y; Wang Y; Wang Z; Liu Y; Zhang L; He Y; Chang S
    Biomed Mater Eng; 2014; 24(6):3073-81. PubMed ID: 25227016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accommodation with and without short-wavelength-sensitive cones and chromatic aberration.
    Kruger PB; Rucker FJ; Hu C; Rutman H; Schmidt NW; Roditis V
    Vision Res; 2005 May; 45(10):1265-74. PubMed ID: 15733959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of longitudinal chromatic aberration on through-focus visual acuity.
    Suchkov N; Fernández EJ; Artal P
    Opt Express; 2019 Nov; 27(24):35935-35947. PubMed ID: 31878758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eye tracking-based estimation and compensation of chromatic offsets for multi-wavelength retinal microstimulation with foveal cone precision.
    Domdei N; Linden M; Reiniger JL; Holz FG; Harmening WM
    Biomed Opt Express; 2019 Aug; 10(8):4126-4141. PubMed ID: 31452999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transverse chromatic offsets with pupil displacements in the human eye: sources of variability and methods for real-time correction.
    Boehm AE; Privitera CM; Schmidt BP; Roorda A
    Biomed Opt Express; 2019 Apr; 10(4):1691-1706. PubMed ID: 31061763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The longitudinal chromatic aberration of the human eye, and its correction.
    Howarth PA; Bradley A
    Vision Res; 1986; 26(2):361-6. PubMed ID: 3716229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The visual benefits of correcting longitudinal and transverse chromatic aberration.
    Roorda A; Cholewiak SA; Bhargava S; Ivzan NH; LaRocca F; Nankivil D; Banks MS
    J Vis; 2023 Feb; 23(2):3. PubMed ID: 36729421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics.
    Vinas M; Dorronsoro C; Cortes D; Pascual D; Marcos S
    Biomed Opt Express; 2015 Mar; 6(3):948-62. PubMed ID: 25798317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.