These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 33614956)
41. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Yan C; Hao L; Hussein A; Young P J Mech Behav Biomed Mater; 2015 Nov; 51():61-73. PubMed ID: 26210549 [TBL] [Abstract][Full Text] [Related]
42. Effect of Process Parameters and Build Orientation on Microstructure and Impact Energy of Electron Beam Powder Bed Fused Ti-6Al-4V. Jeffs S; Lancaster R; Davies G; Hole W; Roberts B; Stapleton D; Thomas M; Todd I; Baxter G Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576597 [TBL] [Abstract][Full Text] [Related]
43. The Effects of Feature Sizes in Selectively Laser Melted Ti-6Al-4V Parts on the Validity of Optimised Process Parameters. Phutela C; Aboulkhair NT; Tuck CJ; Ashcroft I Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31887981 [TBL] [Abstract][Full Text] [Related]
44. Effect of Oxygen Variation on High Cycle Fatigue Behavior of Ti-6Al-4V Titanium Alloy. Tang L; Fan J; Kou H; Tang B; Li J Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32882907 [TBL] [Abstract][Full Text] [Related]
45. Effect of Aging and Cooling Path on the Super β-Transus Heat-Treated Ti-6Al-4V Alloy Produced via Electron Beam Melting (EBM). Carrozza A; Marchese G; Saboori A; Bassini E; Aversa A; Bondioli F; Ugues D; Biamino S; Fino P Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744126 [TBL] [Abstract][Full Text] [Related]
46. Influence of Powder Bed Temperature on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Fabricated via Laser Powder Bed Fusion. Xing LL; Zhang WJ; Zhao CC; Gao WQ; Shen ZJ; Liu W Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33924888 [TBL] [Abstract][Full Text] [Related]
47. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties. Ter Haar GM; Becker TH Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29342079 [TBL] [Abstract][Full Text] [Related]
48. Fretting corrosion behaviour of Ti-6Al-4V reinforced with zirconia in foetal bovine serum. Semetse L; Obadele BA; Raganya L; Geringer J; Olubambi PA J Mech Behav Biomed Mater; 2019 Dec; 100():103392. PubMed ID: 31430704 [TBL] [Abstract][Full Text] [Related]
49. Residual Lattice Strain and Phase Distribution in Ti-6Al-4V Produced by Electron Beam Melting. Maimaitiyili T; Woracek R; Neikter M; Boin M; Wimpory RC; Pederson R; Strobl M; Drakopoulos M; Schäfer N; Bjerkén C Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30813435 [TBL] [Abstract][Full Text] [Related]
50. Corrosion and Corrosion Fatigue Properties of Additively Manufactured Magnesium Alloy WE43 in Comparison to Titanium Alloy Ti-6Al-4V in Physiological Environment. Wegner N; Kotzem D; Wessarges Y; Emminghaus N; Hoff C; Tenkamp J; Hermsdorf J; Overmeyer L; Walther F Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31500239 [TBL] [Abstract][Full Text] [Related]
51. Effects of Process Parameters and Process Defects on the Flexural Fatigue Life of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion. Ramirez B; Banuelos C; De La Cruz A; Nabil ST; Arrieta E; Murr LE; Wicker RB; Medina F Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336289 [TBL] [Abstract][Full Text] [Related]
52. Further Studies into Crack Growth in Additively Manufactured Materials. Iliopoulos AP; Jones R; Michopoulos JG; Phan N; Rans C Materials (Basel); 2020 May; 13(10):. PubMed ID: 32408649 [TBL] [Abstract][Full Text] [Related]
53. High cycle fatigue behavior of implant Ti-6Al-4V in air and simulated body fluid. Liu YJ; Cui SM; He C; Li JK; Wang QY Biomed Mater Eng; 2014; 24(1):263-9. PubMed ID: 24211906 [TBL] [Abstract][Full Text] [Related]
54. Low-Cycle Fatigue Behavior of Wire and Arc Additively Manufactured Ti-6Al-4V Material. Springer S; Leitner M; Gruber T; Oberwinkler B; Lasnik M; Grün F Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763361 [TBL] [Abstract][Full Text] [Related]
55. Data related to the effect of specimen geometry and orientation on tensile properties of Ti-6Al-4V manufactured by electron beam powder bed fusion. Shanbhag G; Wheat E; Moylan S; Vlasea M Data Brief; 2021 Dec; 39():107613. PubMed ID: 34901344 [TBL] [Abstract][Full Text] [Related]
56. Understanding the hot isostatic pressing effectiveness of laser powder bed fusion Ti-6Al-4V by in-situ X-ray imaging and diffraction experiments. Mishurova T; Evsevleev S; Piault P; King A; Henry L; Bruno G Sci Rep; 2023 Oct; 13(1):18433. PubMed ID: 37891199 [TBL] [Abstract][Full Text] [Related]
57. Failure mechanisms data analysis during tension of additively manufactured Ti-6Al-4V alloy reinforced with nano-zirconia particles: Investigations of the crack path. Guennec B; Hattal A; Nagano K; Hocini A; Mukhtarova K; Kinoshita T; Horikawa N; Fujiwara H; Gubicza J; Djemaï M; Dirras G Data Brief; 2024 Jun; 54():110283. PubMed ID: 38524838 [TBL] [Abstract][Full Text] [Related]
58. Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design. Chen PQ; Lin SJ; Wu SS; So H Spine (Phila Pa 1976); 2003 May; 28(9):881-6; discussion 887. PubMed ID: 12942002 [TBL] [Abstract][Full Text] [Related]
59. Analysis of the Microstructure and Mechanical Properties of TiB Tian H; He J; Hou J; Lv Y Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673257 [TBL] [Abstract][Full Text] [Related]
60. Properties of a porous Ti-6Al-4V implant with a low stiffness for biomedical application. Li X; Wang CT; Zhang WG; Li YC Proc Inst Mech Eng H; 2009 Feb; 223(2):173-8. PubMed ID: 19278194 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]