BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33614998)

  • 1. Amphidinol 3 preferentially binds to cholesterol in disordered domains and disrupts membrane phase separation.
    Hieda M; Sorada A; Kinoshita M; Matsumori N
    Biochem Biophys Rep; 2021 Jul; 26():100941. PubMed ID: 33614998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct and stereospecific interaction of amphidinol 3 with sterol in lipid bilayers.
    Espiritu RA; Matsumori N; Tsuda M; Murata M
    Biochemistry; 2014 May; 53(20):3287-93. PubMed ID: 24773476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane permeabilizing action of amphidinol 3 and theonellamide A in raft-forming lipid mixtures.
    Espiritu RA
    Z Naturforsch C J Biosci; 2017 Jan; 72(1-2):43-48. PubMed ID: 27159918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane-permeabilizing activities of amphidinol 3, polyene-polyhydroxy antifungal from a marine dinoflagellate.
    Houdai T; Matsuoka S; Matsumori N; Murata M
    Biochim Biophys Acta; 2004 Nov; 1667(1):91-100. PubMed ID: 15533309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Channel Formation and Membrane Deformation via Sterol-Aided Polymorphism of Amphidinol 3.
    Iwamoto M; Sumino A; Shimada E; Kinoshita M; Matsumori N; Oiki S
    Sci Rep; 2017 Sep; 7(1):10782. PubMed ID: 28883505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sterol effect on interaction between amphidinol 3 and liposomal membrane as evidenced by surface plasmon resonance.
    Swasono RT; Mouri R; Morsy N; Matsumori N; Oishi T; Murata M
    Bioorg Med Chem Lett; 2010 Apr; 20(7):2215-8. PubMed ID: 20207137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total Synthesis of Amphidinol 3: A General Strategy for Synthesizing Amphidinol Analogues and Structure-Activity Relationship Study.
    Wakamiya Y; Ebine M; Matsumori N; Oishi T
    J Am Chem Soc; 2020 Feb; 142(7):3472-3478. PubMed ID: 31986250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natamycin interferes with ergosterol-dependent lipid phases in model membranes.
    Akkerman V; Scheidt HA; Reinholdt P; Bashawat M; Szomek M; Lehmann M; Wessig P; Covey DF; Kongsted J; Müller P; Wüstner D
    BBA Adv; 2023; 4():100102. PubMed ID: 37691996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function.
    Megha ; London E
    J Biol Chem; 2004 Mar; 279(11):9997-10004. PubMed ID: 14699154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of 6-F-ergosterol and its influence on membrane-permeabilization of amphotericin B and amphidinol 3.
    Kasai Y; Matsumori N; Ueno H; Nonomura K; Yano S; Michio M; Oishi T
    Org Biomol Chem; 2011 Mar; 9(5):1437-42. PubMed ID: 21221461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Truncated derivatives of amphidinol 3 reveal the functional role of polyol chain in sterol-recognition and pore formation.
    Matsumori N; Hieda M; Morito M; Wakamiya Y; Oishi T
    Bioorg Med Chem Lett; 2024 Jan; 98():129594. PubMed ID: 38104905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of saponin 1688 with phase separated lipid bilayers.
    Chen M; Balhara V; Jaimes Castillo AM; Balsevich J; Johnston LJ
    Biochim Biophys Acta Biomembr; 2017 Jul; 1859(7):1263-1272. PubMed ID: 28389202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Presence of Sterols Favors Sticholysin I-Membrane Association and Pore Formation Regardless of Their Ability to Form Laterally Segregated Domains.
    Pedrera L; Gomide AB; Sánchez RE; Ros U; Wilke N; Pazos F; Lanio ME; Itri R; Fanani ML; Alvarez C
    Langmuir; 2015 Sep; 31(36):9911-23. PubMed ID: 26273899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
    Crane JM; Tamm LK
    Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of lipid constituents on membrane-permeabilizing activity of amphidinols.
    Morsy N; Houdai T; Konoki K; Matsumori N; Oishi T; Murata M
    Bioorg Med Chem; 2008 Mar; 16(6):3084-90. PubMed ID: 18180163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide.
    Xu X; Bittman R; Duportail G; Heissler D; Vilcheze C; London E
    J Biol Chem; 2001 Sep; 276(36):33540-6. PubMed ID: 11432870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts).
    Megha ; Sawatzki P; Kolter T; Bittman R; London E
    Biochim Biophys Acta; 2007 Sep; 1768(9):2205-12. PubMed ID: 17574203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid peroxidation drives liquid-liquid phase separation and disrupts raft protein partitioning in biological membranes.
    Balakrishnan M; Kenworthy AK
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol precursors stabilize ordinary and ceramide-rich ordered lipid domains (lipid rafts) to different degrees. Implications for the Bloch hypothesis and sterol biosynthesis disorders.
    Megha ; Bakht O; London E
    J Biol Chem; 2006 Aug; 281(31):21903-21913. PubMed ID: 16735517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.