BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

640 related articles for article (PubMed ID: 33615045)

  • 41. Recent advances in research on magnesium alloys and magnesium-calcium phosphate composites as biodegradable implant materials.
    Kuśnierczyk K; Basista M
    J Biomater Appl; 2017 Jan; 31(6):878-900. PubMed ID: 27368753
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone.
    Liu J; Lin Y; Bian D; Wang M; Lin Z; Chu X; Li W; Liu Y; Shen Z; Liu Y; Tong Y; Xu Z; Zhang Y; Zheng Y
    Acta Biomater; 2019 Oct; 98():50-66. PubMed ID: 30853611
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Silk fibroin film-coated MgZnCa alloy with enhanced in vitro and in vivo performance prepared using surface activation.
    Wang C; Fang H; Qi X; Hang C; Sun Y; Peng Z; Wei W; Wang Y
    Acta Biomater; 2019 Jun; 91():99-111. PubMed ID: 31028907
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inherent Antibacterial Properties of Biodegradable FeMnC(Cu) Alloys for Implant Application.
    Paul B; Kiel A; Otto M; Gemming T; Hoffmann V; Giebeler L; Kaltschmidt B; Hütten A; Gebert A; Kaltschmidt B; Kaltschmidt C; Hufenbach J
    ACS Appl Bio Mater; 2024 Feb; 7(2):839-852. PubMed ID: 38253353
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials.
    Schildhauer TA; Robie B; Muhr G; Köller M
    J Orthop Trauma; 2006 Jul; 20(7):476-84. PubMed ID: 16891939
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metallic Materials for Bone Repair.
    Fan L; Chen S; Yang M; Liu Y; Liu J
    Adv Healthc Mater; 2024 Jan; 13(3):e2302132. PubMed ID: 37883735
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: toxicity and DNA damage.
    Ortiz AJ; Fernández E; Vicente A; Calvo JL; Ortiz C
    Am J Orthod Dentofacial Orthop; 2011 Sep; 140(3):e115-22. PubMed ID: 21889059
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Manual polishing of 3D printed metals produced by laser powder bed fusion reduces biofilm formation.
    McGaffey M; Zur Linden A; Bachynski N; Oblak M; James F; Weese JS
    PLoS One; 2019; 14(2):e0212995. PubMed ID: 30811509
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal.
    Gu XN; Xie XH; Li N; Zheng YF; Qin L
    Acta Biomater; 2012 Jul; 8(6):2360-74. PubMed ID: 22387336
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antibacterial Ti-Mn-Cu alloys for biomedical applications.
    Alqattan M; Peters L; Alshammari Y; Yang F; Bolzoni L
    Regen Biomater; 2021 Feb; 8(1):rbaa050. PubMed ID: 33732496
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario: a comparative study with the pure metals and stainless steel.
    Midander K; de Frutos A; Hedberg Y; Darrie G; Wallinder IO
    Integr Environ Assess Manag; 2010 Jul; 6(3):441-55. PubMed ID: 20821706
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations.
    Li Y; Liu L; Wan P; Zhai Z; Mao Z; Ouyang Z; Yu D; Sun Q; Tan L; Ren L; Zhu Z; Hao Y; Qu X; Yang K; Dai K
    Biomaterials; 2016 Nov; 106():250-63. PubMed ID: 27573133
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy.
    Qin H; Zhao Y; An Z; Cheng M; Wang Q; Cheng T; Wang Q; Wang J; Jiang Y; Zhang X; Yuan G
    Biomaterials; 2015 Jun; 53():211-20. PubMed ID: 25890720
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mg-, Zn-, and Fe-Based Alloys With Antibacterial Properties as Orthopedic Implant Materials.
    Wang N; Ma Y; Shi H; Song Y; Guo S; Yang S
    Front Bioeng Biotechnol; 2022; 10():888084. PubMed ID: 35677296
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of alloying elements on cellular response and in-vitro corrosion behavior of titanium-molybdenum-chromium alloys for implant materials.
    Mat-Baharin NH; Razali M; Mohd-Said S; Syarif J; Muchtar A
    J Prosthodont Res; 2020 Oct; 64(4):490-497. PubMed ID: 32063537
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of new metallic alloys for biomedical applications.
    Niinomi M; Nakai M; Hieda J
    Acta Biomater; 2012 Nov; 8(11):3888-903. PubMed ID: 22765961
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanical and electrochemical characterisation of new Ti-Mo-Nb-Zr alloys for biomedical applications.
    Nnamchi PS; Obayi CS; Todd I; Rainforth MW
    J Mech Behav Biomed Mater; 2016 Jul; 60():68-77. PubMed ID: 26773649
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys.
    Ji XJ; Gao L; Liu JC; Wang J; Cheng Q; Li JP; Li SQ; Zhi KQ; Zeng RC; Wang ZL
    Colloids Surf B Biointerfaces; 2019 Jul; 179():429-436. PubMed ID: 31005002
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility.
    Zhou FY; Qiu KJ; Li HF; Huang T; Wang BL; Li L; Zheng YF
    Acta Biomater; 2013 Dec; 9(12):9578-87. PubMed ID: 23928334
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications.
    Sikora-Jasinska M; Mostaed E; Mostaed A; Beanland R; Mantovani D; Vedani M
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1170-1181. PubMed ID: 28531993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.