These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

640 related articles for article (PubMed ID: 33615045)

  • 61. In vitro effects of macrophages on orthopaedic implant alloys and local release of metallic alloy components.
    Heise G; Black CM; Smith R; Morrow BR; Mihalko WM
    Bone Joint J; 2020 Jul; 102-B(7_Supple_B):116-121. PubMed ID: 32600200
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cytotoxicity of alloying elements and experimental titanium alloys by WST-1 and agar overlay tests.
    Song YH; Kim MK; Park EJ; Song HJ; Anusavice KJ; Park YJ
    Dent Mater; 2014 Sep; 30(9):977-83. PubMed ID: 24946979
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.
    Chen M; Zhang E; Zhang L
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():350-60. PubMed ID: 26952433
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Toxicity measurement of orthopedic implant alloy degradation products using a bioluminescent bacterial assay.
    Shettlemore MG; Bundy KJ
    J Biomed Mater Res; 1999 Jun; 45(4):395-403. PubMed ID: 10321713
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant.
    Dziuba D; Meyer-Lindenberg A; Seitz JM; Waizy H; Angrisani N; Reifenrath J
    Acta Biomater; 2013 Nov; 9(10):8548-60. PubMed ID: 22922249
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Alloying and Processing Effects on the Microstructure, Mechanical Properties, and Degradation Behavior of Extruded Magnesium Alloys Containing Calcium, Cerium, or Silver.
    Bohlen J; Meyer S; Wiese B; Luthringer-Feyerabend BJC; Willumeit-Römer R; Letzig D
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31952142
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys.
    Ito A; Okazaki Y; Tateishi T; Ito Y
    J Biomed Mater Res; 1995 Jul; 29(7):893-9. PubMed ID: 7593029
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility.
    Zitter H; Plenk H
    J Biomed Mater Res; 1987 Jul; 21(7):881-96. PubMed ID: 3611146
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements.
    Pogorielov M; Husak E; Solodivnik A; Zhdanov S
    Interv Med Appl Sci; 2017 Mar; 9(1):27-38. PubMed ID: 28932493
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dual ions implantation of zirconium and nitrogen into magnesium alloys for enhanced corrosion resistance, antimicrobial activity and biocompatibility.
    Cheng M; Qiao Y; Wang Q; Qin H; Zhang X; Liu X
    Colloids Surf B Biointerfaces; 2016 Dec; 148():200-210. PubMed ID: 27603717
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys.
    Guo S; Lu Y; Wu S; Liu L; He M; Zhao C; Gan Y; Lin J; Luo J; Xu X; Lin J
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():631-640. PubMed ID: 28024632
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application.
    Liu R; Tang Y; Zeng L; Zhao Y; Ma Z; Sun Z; Xiang L; Ren L; Yang K
    Dent Mater; 2018 Aug; 34(8):1112-1126. PubMed ID: 29709241
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biocompatibility of beta-stabilizing elements of titanium alloys.
    Eisenbarth E; Velten D; Müller M; Thull R; Breme J
    Biomaterials; 2004 Nov; 25(26):5705-13. PubMed ID: 15147816
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Metal levels in cemented total hip arthroplasty. A comparison of well-fixed and loose implants.
    Brien WW; Salvati EA; Betts F; Bullough P; Wright T; Rimnac C; Buly R; Garvin K
    Clin Orthop Relat Res; 1992 Mar; (276):66-74. PubMed ID: 1537176
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The current trends of Mg alloys in biomedical applications-A review.
    Riaz U; Shabib I; Haider W
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1970-1996. PubMed ID: 30536973
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Corrosion resistance and antibacterial properties of polysiloxane modified layer-by-layer assembled self-healing coating on magnesium alloy.
    Zhao Y; Shi L; Ji X; Li J; Han Z; Li S; Zeng R; Zhang F; Wang Z
    J Colloid Interface Sci; 2018 Sep; 526():43-50. PubMed ID: 29715614
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluation of MR issues for the latest standard brands of orthopedic metal implants: plates and screws.
    Zou YF; Chu B; Wang CB; Hu ZY
    Eur J Radiol; 2015 Mar; 84(3):450-457. PubMed ID: 25544555
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Antibacterial activity, corrosion resistance and wear behavior of spark plasma sintered Ta-5Cu alloy for biomedical applications.
    Cui J; Zhao L; Zhu W; Wang B; Zhao C; Fang L; Ren F
    J Mech Behav Biomed Mater; 2017 Oct; 74():315-323. PubMed ID: 28651162
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application.
    Li HF; Qiu KJ; Zhou FY; Li L; Zheng YF
    Sci Rep; 2016 Nov; 6():37475. PubMed ID: 27897182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.