These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 33615389)
1. Biosurfactant based formulation of Pseudomonas guariconensis LE3 with multifarious plant growth promoting traits controls charcoal rot disease in Helianthus annus. Khare E; Arora NK World J Microbiol Biotechnol; 2021 Feb; 37(4):55. PubMed ID: 33615389 [TBL] [Abstract][Full Text] [Related]
2. Genome Mining and Evaluation of the Biocontrol Potential of Chlebek D; Pinski A; Żur J; Michalska J; Hupert-Kocurek K Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33228091 [TBL] [Abstract][Full Text] [Related]
3. Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Pal KK; Tilak KV; Saxena AK; Dey R; Singh CS Microbiol Res; 2001; 156(3):209-23. PubMed ID: 11716210 [TBL] [Abstract][Full Text] [Related]
4. Isolation and characterization of rhizosphere bacteria for the biocontrol of the damping-off disease of tomatoes in Tunisia. Hammami I; Ben Hsouna A; Hamdi N; Gdoura R; Triki MA C R Biol; 2013; 336(11-12):557-64. PubMed ID: 24296079 [TBL] [Abstract][Full Text] [Related]
5. Pseudomonas sp. AF-54 containing multiple plant beneficial traits acts as growth enhancer of Helianthus annuus L. under reduced fertilizer input. Majeed A; Kaleem Abbasi M; Hameed S; Yasmin S; Hanif MK; Naqqash T; Imran A Microbiol Res; 2018 Nov; 216():56-69. PubMed ID: 30269857 [TBL] [Abstract][Full Text] [Related]
6. Suppression of charcoal rot in soybean by moderately halotolerant Pseudomonas aeruginosa GS-33 under saline conditions. Patil S; Paradeshi J; Chaudhari B J Basic Microbiol; 2016 Aug; 56(8):889-99. PubMed ID: 27213894 [TBL] [Abstract][Full Text] [Related]
7. Delftia tsuruhatensis WGR-UOM-BT1, a novel rhizobacterium with PGPR properties from Rauwolfia serpentina (L.) Benth. ex Kurz also suppresses fungal phytopathogens by producing a new antibiotic-AMTM. Prasannakumar SP; Gowtham HG; Hariprasad P; Shivaprasad K; Niranjana SR Lett Appl Microbiol; 2015 Nov; 61(5):460-8. PubMed ID: 26258398 [TBL] [Abstract][Full Text] [Related]
8. A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth. Simonetti E; Roberts IN; Montecchia MS; Gutierrez-Boem FH; Gomez FM; Ruiz JA Microbiol Res; 2018 Jan; 206():50-59. PubMed ID: 29146260 [TBL] [Abstract][Full Text] [Related]
9. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Ali S; Hameed S; Shahid M; Iqbal M; Lazarovits G; Imran A Microbiol Res; 2020 Feb; 232():126389. PubMed ID: 31821969 [TBL] [Abstract][Full Text] [Related]
10. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Dey R; Pal KK; Bhatt DM; Chauhan SM Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384 [TBL] [Abstract][Full Text] [Related]
11. Detection and characterization of broad-spectrum antipathogen activity of novel rhizobacterial isolates and suppression of Fusarium crown and root rot disease of tomato. Zhang L; Khabbaz SE; Wang A; Li H; Abbasi PA J Appl Microbiol; 2015 Mar; 118(3):685-703. PubMed ID: 25512025 [TBL] [Abstract][Full Text] [Related]
12. Antifungal metabolites produced by Pseudomonas hunanensis SPT26 effective in biocontrol of fusarium wilt of Lycopersicum esculentum under saline conditions. Verma P; Bhattacharya A; Bharti C; Arora NK World J Microbiol Biotechnol; 2024 Aug; 40(10):305. PubMed ID: 39160389 [TBL] [Abstract][Full Text] [Related]
13. Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Khare E; Arora NK Curr Microbiol; 2010 Jul; 61(1):64-8. PubMed ID: 20049597 [TBL] [Abstract][Full Text] [Related]
14. Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Tewari S; Arora NK Curr Microbiol; 2014 Oct; 69(4):484-94. PubMed ID: 24880775 [TBL] [Abstract][Full Text] [Related]
15. Biocontrol efficacy and plant growth promoting activity of Bacillus altitudinis isolated from Darjeeling hills, India. Sunar K; Dey P; Chakraborty U; Chakraborty B J Basic Microbiol; 2015 Jan; 55(1):91-104. PubMed ID: 23996212 [TBL] [Abstract][Full Text] [Related]
16. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Jain R; Pandey A Microbiol Res; 2016 Sep; 190():63-71. PubMed ID: 27394000 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of plant growth promotion and disease suppression by Pseudomonas aeruginosa strain 2apa. Hariprasad P; Chandrashekar S; Singh SB; Niranjana SR J Basic Microbiol; 2014 Aug; 54(8):792-801. PubMed ID: 23681707 [TBL] [Abstract][Full Text] [Related]
18. Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Naik PR; Sakthivel N Res Microbiol; 2006; 157(6):538-46. PubMed ID: 16797931 [TBL] [Abstract][Full Text] [Related]
19. Novel Bioformulations Developed from Mishra I; Fatima T; Egamberdieva D; Arora NK Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33053904 [TBL] [Abstract][Full Text] [Related]
20. Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench. Agarwal M; Dheeman S; Dubey RC; Kumar P; Maheshwari DK; Bajpai VK Microbiol Res; 2017 Dec; 205():40-47. PubMed ID: 28942843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]