BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33615774)

  • 1. Understanding RNA Binding by the Nonclassical Zinc Finger Protein CPSF30, a Key Factor in Polyadenylation during Pre-mRNA Processing.
    Pritts JD; Oluyadi AA; Huang W; Shimberg GD; Kane MA; Wilks A; Michel SLJ
    Biochemistry; 2021 Mar; 60(10):780-790. PubMed ID: 33615774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the RNA Binding Properties of the Iron-Sulfur Zinc Finger Protein CPSF30.
    Pritts JD; Hursey MS; Michalek JL; Batelu S; Stemmler TL; Michel SLJ
    Biochemistry; 2020 Mar; 59(8):970-982. PubMed ID: 32027124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cleavage and polyadenylation specificity factor 30: An RNA-binding zinc-finger protein with an unexpected 2Fe-2S cluster.
    Shimberg GD; Michalek JL; Oluyadi AA; Rodrigues AV; Zucconi BE; Neu HM; Ghosh S; Sureschandra K; Wilson GM; Stemmler TL; Michel SL
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4700-5. PubMed ID: 27071088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism for the interaction between human CPSF30 and hFip1.
    Hamilton K; Tong L
    Genes Dev; 2020 Dec; 34(23-24):1753-1761. PubMed ID: 33122294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3' processing.
    Chan SL; Huppertz I; Yao C; Weng L; Moresco JJ; Yates JR; Ule J; Manley JL; Shi Y
    Genes Dev; 2014 Nov; 28(21):2370-80. PubMed ID: 25301780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent molecular insights into canonical pre-mRNA 3'-end processing.
    Sun Y; Hamilton K; Tong L
    Transcription; 2020 Apr; 11(2):83-96. PubMed ID: 32522085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis for the recognition of the human AAUAAA polyadenylation signal.
    Sun Y; Zhang Y; Hamilton K; Manley JL; Shi Y; Walz T; Tong L
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1419-E1428. PubMed ID: 29208711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis for the recognition of the AUUAAA polyadenylation signal by mPSF.
    Gutierrez PA; Wei J; Sun Y; Tong L
    RNA; 2022 Nov; 28(11):1534-1541. PubMed ID: 36130077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into the assembly and polyA signal recognition mechanism of the human CPSF complex.
    Clerici M; Faini M; Aebersold R; Jinek M
    Elife; 2017 Dec; 6():. PubMed ID: 29274231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel endonuclease activity associated with the Arabidopsis ortholog of the 30-kDa subunit of cleavage and polyadenylation specificity factor.
    Addepalli B; Hunt AG
    Nucleic Acids Res; 2007; 35(13):4453-63. PubMed ID: 17576667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of 3' end processing of mammalian pre-mRNA reveals a central role of RBBP6.
    Schmidt M; Kluge F; Sandmeir F; Kühn U; Schäfer P; Tüting C; Ihling C; Conti E; Wahle E
    Genes Dev; 2022 Feb; 36(3-4):195-209. PubMed ID: 35177537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fip1 is a multivalent interaction scaffold for processing factors in human mRNA 3' end biogenesis.
    Muckenfuss LM; Migenda Herranz AC; Boneberg FM; Clerici M; Jinek M
    Elife; 2022 Sep; 11():. PubMed ID: 36073787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CPSF30 at the Interface of Alternative Polyadenylation and Cellular Signaling in Plants.
    Chakrabarti M; Hunt AG
    Biomolecules; 2015 Jun; 5(2):1151-68. PubMed ID: 26061761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33.
    Schönemann L; Kühn U; Martin G; Schäfer P; Gruber AR; Keller W; Zavolan M; Wahle E
    Genes Dev; 2014 Nov; 28(21):2381-93. PubMed ID: 25301781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of AAUAAA polyadenylation signal recognition by the human CPSF complex.
    Clerici M; Faini M; Muckenfuss LM; Aebersold R; Jinek M
    Nat Struct Mol Biol; 2018 Feb; 25(2):135-138. PubMed ID: 29358758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct roles of two Yth1p domains in 3'-end cleavage and polyadenylation of yeast pre-mRNAs.
    Barabino SM; Ohnacker M; Keller W
    EMBO J; 2000 Jul; 19(14):3778-87. PubMed ID: 10899131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location.
    MacDonald CC; Wilusz J; Shenk T
    Mol Cell Biol; 1994 Oct; 14(10):6647-54. PubMed ID: 7935383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical characterizations of the recognition of the AAUAAA polyadenylation signal.
    Hamilton K; Sun Y; Tong L
    RNA; 2019 Dec; 25(12):1673-1680. PubMed ID: 31462423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide control of polyadenylation site choice by CPSF30 in Arabidopsis.
    Thomas PE; Wu X; Liu M; Gaffney B; Ji G; Li QQ; Hunt AG
    Plant Cell; 2012 Nov; 24(11):4376-88. PubMed ID: 23136375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cleavage and polyadenylation factor CPF specifically interacts with the pre-mRNA 3' processing signal AAUAAA.
    Keller W; Bienroth S; Lang KM; Christofori G
    EMBO J; 1991 Dec; 10(13):4241-9. PubMed ID: 1756731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.