These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 33615774)

  • 1. Understanding RNA Binding by the Nonclassical Zinc Finger Protein CPSF30, a Key Factor in Polyadenylation during Pre-mRNA Processing.
    Pritts JD; Oluyadi AA; Huang W; Shimberg GD; Kane MA; Wilks A; Michel SLJ
    Biochemistry; 2021 Mar; 60(10):780-790. PubMed ID: 33615774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the RNA Binding Properties of the Iron-Sulfur Zinc Finger Protein CPSF30.
    Pritts JD; Hursey MS; Michalek JL; Batelu S; Stemmler TL; Michel SLJ
    Biochemistry; 2020 Mar; 59(8):970-982. PubMed ID: 32027124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cleavage and polyadenylation specificity factor 30: An RNA-binding zinc-finger protein with an unexpected 2Fe-2S cluster.
    Shimberg GD; Michalek JL; Oluyadi AA; Rodrigues AV; Zucconi BE; Neu HM; Ghosh S; Sureschandra K; Wilson GM; Stemmler TL; Michel SL
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4700-5. PubMed ID: 27071088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism for the interaction between human CPSF30 and hFip1.
    Hamilton K; Tong L
    Genes Dev; 2020 Dec; 34(23-24):1753-1761. PubMed ID: 33122294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3' processing.
    Chan SL; Huppertz I; Yao C; Weng L; Moresco JJ; Yates JR; Ule J; Manley JL; Shi Y
    Genes Dev; 2014 Nov; 28(21):2370-80. PubMed ID: 25301780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent molecular insights into canonical pre-mRNA 3'-end processing.
    Sun Y; Hamilton K; Tong L
    Transcription; 2020 Apr; 11(2):83-96. PubMed ID: 32522085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis for the recognition of the human AAUAAA polyadenylation signal.
    Sun Y; Zhang Y; Hamilton K; Manley JL; Shi Y; Walz T; Tong L
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1419-E1428. PubMed ID: 29208711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis for the recognition of the AUUAAA polyadenylation signal by mPSF.
    Gutierrez PA; Wei J; Sun Y; Tong L
    RNA; 2022 Nov; 28(11):1534-1541. PubMed ID: 36130077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into the assembly and polyA signal recognition mechanism of the human CPSF complex.
    Clerici M; Faini M; Aebersold R; Jinek M
    Elife; 2017 Dec; 6():. PubMed ID: 29274231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel endonuclease activity associated with the Arabidopsis ortholog of the 30-kDa subunit of cleavage and polyadenylation specificity factor.
    Addepalli B; Hunt AG
    Nucleic Acids Res; 2007; 35(13):4453-63. PubMed ID: 17576667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of 3' end processing of mammalian pre-mRNA reveals a central role of RBBP6.
    Schmidt M; Kluge F; Sandmeir F; Kühn U; Schäfer P; Tüting C; Ihling C; Conti E; Wahle E
    Genes Dev; 2022 Feb; 36(3-4):195-209. PubMed ID: 35177537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fip1 is a multivalent interaction scaffold for processing factors in human mRNA 3' end biogenesis.
    Muckenfuss LM; Migenda Herranz AC; Boneberg FM; Clerici M; Jinek M
    Elife; 2022 Sep; 11():. PubMed ID: 36073787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CPSF30 at the Interface of Alternative Polyadenylation and Cellular Signaling in Plants.
    Chakrabarti M; Hunt AG
    Biomolecules; 2015 Jun; 5(2):1151-68. PubMed ID: 26061761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33.
    Schönemann L; Kühn U; Martin G; Schäfer P; Gruber AR; Keller W; Zavolan M; Wahle E
    Genes Dev; 2014 Nov; 28(21):2381-93. PubMed ID: 25301781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of AAUAAA polyadenylation signal recognition by the human CPSF complex.
    Clerici M; Faini M; Muckenfuss LM; Aebersold R; Jinek M
    Nat Struct Mol Biol; 2018 Feb; 25(2):135-138. PubMed ID: 29358758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct roles of two Yth1p domains in 3'-end cleavage and polyadenylation of yeast pre-mRNAs.
    Barabino SM; Ohnacker M; Keller W
    EMBO J; 2000 Jul; 19(14):3778-87. PubMed ID: 10899131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location.
    MacDonald CC; Wilusz J; Shenk T
    Mol Cell Biol; 1994 Oct; 14(10):6647-54. PubMed ID: 7935383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical characterizations of the recognition of the AAUAAA polyadenylation signal.
    Hamilton K; Sun Y; Tong L
    RNA; 2019 Dec; 25(12):1673-1680. PubMed ID: 31462423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide control of polyadenylation site choice by CPSF30 in Arabidopsis.
    Thomas PE; Wu X; Liu M; Gaffney B; Ji G; Li QQ; Hunt AG
    Plant Cell; 2012 Nov; 24(11):4376-88. PubMed ID: 23136375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cleavage and polyadenylation factor CPF specifically interacts with the pre-mRNA 3' processing signal AAUAAA.
    Keller W; Bienroth S; Lang KM; Christofori G
    EMBO J; 1991 Dec; 10(13):4241-9. PubMed ID: 1756731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.