These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 33615775)

  • 21. Enhancing the Efficiency and Stability of Triple-Cation Perovskite Solar Cells by Eliminating Excess PbI
    Hu Z; An Q; Xiang H; Aigouy L; Sun B; Vaynzof Y; Chen Z
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):54824-54832. PubMed ID: 33226765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Defect Passivation by a Multifunctional Phosphate Additive toward Improvements of Efficiency and Stability of Perovskite Solar Cells.
    Zhang WH; Chen L; Zou ZP; Nan ZA; Shi JL; Luo QP; Hui Y; Li KX; Wang YJ; Zhou JZ; Yan JW; Mao BW
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):31911-31919. PubMed ID: 35796315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unveiling the roles of halogen ions in the surface passivation of CsPbI
    Han S; Guan L; Yin T; Zhang J; Guo J; Chen X; Li X
    Phys Chem Chem Phys; 2022 May; 24(17):10184-10192. PubMed ID: 35420099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 20.67%-Efficiency Inorganic CsPbI
    Zou H; Duan Y; Yang S; Xu D; Yang L; Cui J; Zhou H; Wu M; Wang J; Lei X; Zhang N; Liu Z
    Small; 2023 Jan; 19(2):e2206205. PubMed ID: 36399648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational Surface-Defect Control via Designed Passivation for High-Efficiency Inorganic Perovskite Solar Cells.
    Gu X; Xiang W; Tian Q; Liu SF
    Angew Chem Int Ed Engl; 2021 Oct; 60(43):23164-23170. PubMed ID: 34405503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anion Binding Interaction Enhances the Robustness of Iodide for High-Performance Perovskite Solar Cells.
    Huang Q; Zhao Q; Zhang B; Du X; Liu D; Ji H; Gao C; Sun X; Wei Y; Shao Z; Ding J; Wang X; Cui G; Pang S
    ACS Appl Mater Interfaces; 2024 May; 16(20):26460-26467. PubMed ID: 38713066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergistic Surface Defect Passivation of Ionic Liquids for Efficient and Stable MAPbI
    Duan S; Sun Q; Liu G; Deng J; Meng X; Shen B; Hu D; Kang B; Silva SRP
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):46483-46492. PubMed ID: 37748040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrophobic Polystyrene Passivation Layer for Simultaneously Improved Efficiency and Stability in Perovskite Solar Cells.
    Li M; Yan X; Kang Z; Huan Y; Li Y; Zhang R; Zhang Y
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18787-18795. PubMed ID: 29749222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defect Passivation Scheme toward High-Performance Halide Perovskite Solar Cells.
    Du B; He K; Zhao X; Li B
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interfacial Engineering of Perovskite Solar Cells with Evaporated PbI
    Li Y; Li W; Xu Y; Li R; Yu T; Lin Q
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):53282-53288. PubMed ID: 34702034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In Situ Passivation on Rear Perovskite Interface for Efficient and Stable Perovskite Solar Cells.
    Wang G; Wang L; Qiu J; Yan Z; Li C; Dai C; Zhen C; Tai K; Yu W; Jiang X
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7690-7700. PubMed ID: 31961639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward Highly Reproducible, Efficient, and Stable Perovskite Solar Cells via Interface Engineering with CoO Nanoplates.
    Dou Y; Wang D; Li G; Liao Y; Sun W; Wu J; Lan Z
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32159-32168. PubMed ID: 31403271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ligand-Modulated Excess PbI
    Wang H; Wang Z; Yang Z; Xu Y; Ding Y; Tan L; Yi C; Zhang Z; Meng K; Chen G; Zhao Y; Luo Y; Zhang X; Hagfeldt A; Luo J
    Adv Mater; 2020 May; 32(21):e2000865. PubMed ID: 32285563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient and Stable Perovskite Solar Cells by B-Site Compositional Engineered All-Inorganic Perovskites and Interface Passivation.
    Shen L; Yang Y; Zhu T; Liu L; Zheng J; Gong X
    ACS Appl Mater Interfaces; 2022 May; 14(17):19469-19479. PubMed ID: 35465651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pb-Sn-Cu Ternary Organometallic Halide Perovskite Solar Cells.
    Li M; Wang ZK; Zhuo MP; Hu Y; Hu KH; Ye QQ; Jain SM; Yang YG; Gao XY; Liao LS
    Adv Mater; 2018 May; 30(20):e1800258. PubMed ID: 29603445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorinated Oligomer Wrapped Perovskite Crystals for Inverted MAPbI
    Xie L; Xie J; Wang S; Chen B; Yang C; Wang Z; Liu X; Chen J; Jia K; Hao F
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26093-26101. PubMed ID: 34053218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intermolecular π-π Conjugation Self-Assembly to Stabilize Surface Passivation of Highly Efficient Perovskite Solar Cells.
    Li H; Shi J; Deng J; Chen Z; Li Y; Zhao W; Wu J; Wu H; Luo Y; Li D; Meng Q
    Adv Mater; 2020 Jun; 32(23):e1907396. PubMed ID: 32350937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct In Situ Conversion of Lead Iodide to a Highly Oriented and Crystallized Perovskite Thin Film via Sequential Deposition for 23.48% Efficient and Stable Photovoltaic Devices.
    Zhou Z; Liang J; Zhang Z; Zheng Y; Wu X; Tian C; Huang Y; Wang J; Yang Y; Sun A; Chen Z; Chen CC
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36310522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perfection of Perovskite Grain Boundary Passivation by Rhodium Incorporation for Efficient and Stable Solar Cells.
    Liu W; Liu N; Ji S; Hua H; Ma Y; Hu R; Zhang J; Chu L; Li X; Huang W
    Nanomicro Lett; 2020 Jun; 12(1):119. PubMed ID: 34138140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Postpassivation of Cs
    Jia J; Dong J; Shi B; Wu J; Wu Y; Cao B
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2472-2482. PubMed ID: 33426880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.