BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 33615984)

  • 1. Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut microbiome and affect human health.
    Coker JK; Moyne O; Rodionov DA; Zengler K
    Gut Microbes; 2021; 13(1):1-18. PubMed ID: 33615984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in dietary fiber intake in mice reveal associations between colonic mucin
    Gamage HKAH; Chong RWW; Bucio-Noble D; Kautto L; Hardikar AA; Ball MS; Molloy MP; Packer NH; Paulsen IT
    Gut Microbes; 2020 Nov; 12(1):1802209. PubMed ID: 32991816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and structural basis of sialic acid utilization by gut microbes.
    Bell A; Severi E; Owen CD; Latousakis D; Juge N
    J Biol Chem; 2023 Mar; 299(3):102989. PubMed ID: 36758803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Symbiotic Human Gut Bacteria with Variable Metabolic Priorities for Host Mucosal Glycans.
    Pudlo NA; Urs K; Kumar SS; German JB; Mills DA; Martens EC
    mBio; 2015 Nov; 6(6):e01282-15. PubMed ID: 26556271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic and Genomic Diversification in Complex Carbohydrate-Degrading Human Gut Bacteria.
    Pudlo NA; Urs K; Crawford R; Pirani A; Atherly T; Jimenez R; Terrapon N; Henrissat B; Peterson D; Ziemer C; Snitkin E; Martens EC
    mSystems; 2022 Feb; 7(1):e0094721. PubMed ID: 35166563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of non-digestible carbohydrates in the gut microbiome.
    Rastall RA; Diez-Municio M; Forssten SD; Hamaker B; Meynier A; Moreno FJ; Respondek F; Stahl B; Venema K; Wiese M
    Benef Microbes; 2022 Jun; 13(2):95-168. PubMed ID: 35729770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model of competition between fiber and mucin degraders in the gut provides a possible explanation for mucus thinning.
    Jegatheesan T; Moorthy AS; Eberl HJ
    J Theor Biol; 2024 Jun; 587():111824. PubMed ID: 38604595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sialate
    Robinson LS; Lewis WG; Lewis AL
    J Biol Chem; 2017 Jul; 292(28):11861-11872. PubMed ID: 28526748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subtle Variations in Dietary-Fiber Fine Structure Differentially Influence the Composition and Metabolic Function of Gut Microbiota.
    Tuncil YE; Thakkar RD; Arioglu-Tuncil S; Hamaker BR; Lindemann SR
    mSphere; 2020 May; 5(3):. PubMed ID: 32376698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestinal mucin-type
    Raev SA; Amimo JO; Saif LJ; Vlasova AN
    Gut Microbes; 2023; 15(1):2197833. PubMed ID: 37020288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consumption of non-digestible oligosaccharides elevates colonic alkaline phosphatase activity by up-regulating the expression of IAP-I, with increased mucins and microbial fermentation in rats fed a high-fat diet.
    Okazaki Y; Katayama T
    Br J Nutr; 2019 Jan; 121(2):146-154. PubMed ID: 30400998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Gut Metagenomes Encode Diverse GH156 Sialidases.
    Mann E; Shekarriz S; Surette MG
    Appl Environ Microbiol; 2022 Dec; 88(23):e0175522. PubMed ID: 36394327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence.
    Tuncil YE; Xiao Y; Porter NT; Reuhs BL; Martens EC; Hamaker BR
    mBio; 2017 Oct; 8(5):. PubMed ID: 29018117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation of a sialic acid metabolism pathway in mucus-foraging Ruminococcus gnavus unravels mechanisms of bacterial adaptation to the gut.
    Bell A; Brunt J; Crost E; Vaux L; Nepravishta R; Owen CD; Latousakis D; Xiao A; Li W; Chen X; Walsh MA; Claesen J; Angulo J; Thomas GH; Juge N
    Nat Microbiol; 2019 Dec; 4(12):2393-2404. PubMed ID: 31636419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: An overview.
    Shang Q; Jiang H; Cai C; Hao J; Li G; Yu G
    Carbohydr Polym; 2018 Jan; 179():173-185. PubMed ID: 29111040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mucin glycans and their degradation by gut microbiota.
    Yamaguchi M; Yamamoto K
    Glycoconj J; 2023 Aug; 40(4):493-512. PubMed ID: 37318672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods.
    Loo YT; Howell K; Chan M; Zhang P; Ng K
    Compr Rev Food Sci Food Saf; 2020 Jul; 19(4):1268-1298. PubMed ID: 33337077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary fiber and prebiotics and the gastrointestinal microbiota.
    Holscher HD
    Gut Microbes; 2017 Mar; 8(2):172-184. PubMed ID: 28165863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbiota functional activity biosensors for characterizing nutrient metabolism in vivo.
    Wesener DA; Beller ZW; Peters SL; Rajabi A; Dimartino G; Giannone RJ; Hettich RL; Gordon JI
    Elife; 2021 Mar; 10():. PubMed ID: 33684031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Health benefits of whole grain: effects on dietary carbohydrate quality, the gut microbiome, and consequences of processing.
    Seal CJ; Courtin CM; Venema K; de Vries J
    Compr Rev Food Sci Food Saf; 2021 May; 20(3):2742-2768. PubMed ID: 33682356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.