These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Computational Study for CO Li X; Panetier JA ACS Catal; 2021 Nov; 11(21):12989-13000. PubMed ID: 36860803 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Electrochemical CO Talukdar K; Sinha Roy S; Amatya E; Sleeper EA; Le Magueres P; Jurss JW Inorg Chem; 2020 May; 59(9):6087-6099. PubMed ID: 32309933 [TBL] [Abstract][Full Text] [Related]
5. Oxidative and Reductive Manipulation of C1 Resources by Bio-Inspired Molecular Catalysts to Produce Value-Added Chemicals. Ishizuka T; Kojima T Acc Chem Res; 2024 Aug; 57(16):2437-2447. PubMed ID: 39116211 [TBL] [Abstract][Full Text] [Related]
6. Push or Pull? Proton Responsive Ligand Effects in Rhenium Tricarbonyl CO2 Reduction Catalysts. Manbeck GF; Muckerman JT; Szalda DJ; Himeda Y; Fujita E J Phys Chem B; 2015 Jun; 119(24):7457-66. PubMed ID: 25697424 [TBL] [Abstract][Full Text] [Related]
8. Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids. Smieja JM; Sampson MD; Grice KA; Benson EE; Froehlich JD; Kubiak CP Inorg Chem; 2013 Mar; 52(5):2484-91. PubMed ID: 23418912 [TBL] [Abstract][Full Text] [Related]
9. Sequential Gas-Phase Activation of Carbon Dioxide and Methane by [Re(CO) Zhou S; Li J; Firouzbakht M; Schlangen M; Schwarz H J Am Chem Soc; 2017 May; 139(17):6169-6176. PubMed ID: 28403605 [TBL] [Abstract][Full Text] [Related]
11. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion. Costentin C; Robert M; Savéant JM Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053 [TBL] [Abstract][Full Text] [Related]
12. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4. Li W; Seredych M; Rodríguez-Castellón E; Bandosz TJ ChemSusChem; 2016 Mar; 9(6):606-16. PubMed ID: 26835880 [TBL] [Abstract][Full Text] [Related]
13. Site Isolation Leads to Stable Photocatalytic Reduction of CO2 over a Rhenium-Based Catalyst. Liang W; Church TL; Zheng S; Zhou C; Haynes BS; D'Alessandro DM Chemistry; 2015 Dec; 21(51):18576-9. PubMed ID: 26538203 [TBL] [Abstract][Full Text] [Related]
14. Robust Binding of Disulfide-Substituted Rhenium Bipyridyl Complexes for CO Cattaneo M; Guo F; Kelly HR; Videla PE; Kiefer L; Gebre S; Ge A; Liu Q; Wu S; Lian T; Batista VS Front Chem; 2020; 8():86. PubMed ID: 32117901 [TBL] [Abstract][Full Text] [Related]
16. Catalytic Decomposition of an Organic Electrolyte to Methane by a Cu Complex-Derived In Situ CO Kim K; Wagner P; Wagner K; Mozer AJ ACS Omega; 2023 Nov; 8(44):41792-41801. PubMed ID: 37970018 [TBL] [Abstract][Full Text] [Related]
17. Rhenium Complexes Based on 2-Pyridyl-1,2,3-triazole Ligands: A New Class of CO Ching HY; Wang X; He M; Perujo Holland N; Guillot R; Slim C; Griveau S; Bertrand HC; Policar C; Bedioui F; Fontecave M Inorg Chem; 2017 Mar; 56(5):2966-2976. PubMed ID: 28221777 [TBL] [Abstract][Full Text] [Related]
18. Photocatalytic reduction of CO Zhu CY; Zhang YQ; Liao RZ; Xia W; Hu JC; Wu J; Liu H; Wang F Dalton Trans; 2018 Oct; 47(37):13142-13150. PubMed ID: 30168831 [TBL] [Abstract][Full Text] [Related]
19. Strong Impact of Intramolecular Hydrogen Bonding on the Cathodic Path of [Re(3,3'-dihydroxy-2,2'-bipyridine)(CO) Taylor JO; Neri G; Banerji L; Cowan AJ; Hartl F Inorg Chem; 2020 Apr; 59(8):5564-5578. PubMed ID: 32237729 [TBL] [Abstract][Full Text] [Related]
20. Electronic Effects of Substituents on Rotundo L; Azzi E; Deagostino A; Garino C; Nencini L; Priola E; Quagliotto P; Rocca R; Gobetto R; Nervi C Front Chem; 2019; 7():417. PubMed ID: 31231639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]