BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33616403)

  • 21. Advances on electrochemical disinfection research: Mechanisms, influencing factors and applications.
    Li Z; Yang D; Li S; Yang L; Yan W; Xu H
    Sci Total Environ; 2024 Feb; 912():169043. PubMed ID: 38070567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water Disinfection in Rural Areas Demands Unconventional Solar Technologies.
    Chu C; Ryberg EC; Loeb SK; Suh MJ; Kim JH
    Acc Chem Res; 2019 May; 52(5):1187-1195. PubMed ID: 30943006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes.
    Jeong J; Kim C; Yoon J
    Water Res; 2009 Mar; 43(4):895-901. PubMed ID: 19084255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disinfection of biologically treated wastewater and prevention of biofouling by UV/electrolysis hybrid technology: influence factors and limits for domestic wastewater reuse.
    Haaken D; Dittmar T; Schmalz V; Worch E
    Water Res; 2014 Apr; 52():20-8. PubMed ID: 24447954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The impact of electrochemical disinfection on Escherichia coli and Legionella pneumophila in tap water.
    Delaedt Y; Daneels A; Declerck P; Behets J; Ryckeboer J; Peters E; Ollevier F
    Microbiol Res; 2008; 163(2):192-9. PubMed ID: 16793247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell.
    Huang X; Qu Y; Cid CA; Finke C; Hoffmann MR; Lim K; Jiang SC
    Water Res; 2016 Apr; 92():164-72. PubMed ID: 26854604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of metal oxides on oxidant decay and disinfection byproduct formation in drinking waters: Relevance to distribution systems.
    Liu C
    J Environ Sci (China); 2021 Dec; 110():140-149. PubMed ID: 34593185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disinfection of Wastewater by UV-Based Treatment for Reuse in a Circular Economy Perspective. Where Are We at?
    Collivignarelli MC; Abbà A; Miino MC; Caccamo FM; Torretta V; Rada EC; Sorlini S
    Int J Environ Res Public Health; 2020 Dec; 18(1):. PubMed ID: 33374200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergistic effect of the sequential use of UV irradiation and chlorine to disinfect reclaimed water.
    Wang X; Hu X; Wang H; Hu C
    Water Res; 2012 Mar; 46(4):1225-32. PubMed ID: 22221337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multivariate experimental design provides insights for the optimisation of rechloramination conditions and water age to control disinfectant decay and disinfection by-product formation in treated drinking water.
    Li RA; McDonald JA; Sathasivan A; Khan SJ
    Sci Total Environ; 2022 Jul; 830():154324. PubMed ID: 35283134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inactivation of particle-associated microorganisms in wastewater disinfection: modeling of ozone and chlorine reactive diffusive transport in polydispersed suspensions.
    Dietrich JP; Loge FJ; Ginn TR; Başağaoğlu H
    Water Res; 2007 May; 41(10):2189-201. PubMed ID: 17389144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Utilisation of appropriately treated wastewater for some further beneficial purposes: a review of the disinfection method of treated wastewater using UV radiation technology.
    Zewde AA; Li Z; Zhang L; Odey EA; Xiaoqin Z
    Rev Environ Health; 2020 Jun; 35(2):139-146. PubMed ID: 31743106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detailed modeling and advanced control for chemical disinfection of secondary effluent wastewater by peracetic acid.
    Manoli K; Sarathy S; Maffettone R; Santoro D
    Water Res; 2019 Apr; 153():251-262. PubMed ID: 30731340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved blackwater disinfection using potentiodynamic methods with oxidized boron-doped diamond electrodes.
    Thostenson JO; Mourouvin R; Hawkins BT; Ngaboyamahina E; Sellgren KL; Parker CB; Deshusses MA; Stoner BR; Glass JT
    Water Res; 2018 Sep; 140():191-199. PubMed ID: 29715643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemical alternatives for drinking water disinfection.
    Martínez-Huitle CA; Brillas E
    Angew Chem Int Ed Engl; 2008; 47(11):1998-2005. PubMed ID: 18219638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impacts of virus processing on human norovirus GI and GII persistence during disinfection of municipal secondary wastewater effluent.
    Dunkin N; Weng S; Coulter CG; Jacangelo JG; Schwab KJ
    Water Res; 2018 May; 134():1-12. PubMed ID: 29407643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thinking Outside the Treatment Plant: UV for Water Distribution System Disinfection.
    Linden KG; Hull N; Speight V
    Acc Chem Res; 2019 May; 52(5):1226-1233. PubMed ID: 31038919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical advanced oxidation process using DiaChem electrodes.
    Tröster I; Schäfer L; Fryda M; Matthée T
    Water Sci Technol; 2004; 49(4):207-12. PubMed ID: 15077973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of chlorine tolerance profile of dominant gram negative bacteria recovered from secondary treated wastewater in Jaipur, India.
    Shekhawat SS; Kulshreshtha NM; Gupta AB
    J Environ Manage; 2020 Feb; 255():109827. PubMed ID: 31739205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wastewater reuse: modeling chloroform formation.
    Rebelo A; Ferra I; Marques A; Silva MM
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):24560-24566. PubMed ID: 27680004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.