These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 33616648)
1. Uncovering the Molecular Cause of Preeclampsia-The Role of Glutathionylation of the Na+/K+ ATPase Transporter. Brownfoot FC J Clin Endocrinol Metab; 2021 Jun; 106(7):e2830-e2832. PubMed ID: 33616648 [No Abstract] [Full Text] [Related]
2. S-glutathionylation of the Na+-K+ Pump: A Novel Redox Mechanism in Preeclampsia. Liu CC; Zhang Y; Makris A; Rasmussen HH; Hennessy A J Clin Endocrinol Metab; 2021 Mar; 106(4):1091-1100. PubMed ID: 33382878 [TBL] [Abstract][Full Text] [Related]
3. Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation. Figtree GA; Liu CC; Bibert S; Hamilton EJ; Garcia A; White CN; Chia KK; Cornelius F; Geering K; Rasmussen HH Circ Res; 2009 Jul; 105(2):185-93. PubMed ID: 19542013 [TBL] [Abstract][Full Text] [Related]
4. Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition. Chia KK; Liu CC; Hamilton EJ; Garcia A; Fry NA; Hannam W; Figtree GA; Rasmussen HH Am J Physiol Cell Physiol; 2015 Aug; 309(4):C239-50. PubMed ID: 26084308 [TBL] [Abstract][Full Text] [Related]
5. Basal Glutathionylation of Na,K-ATPase α-Subunit Depends on Redox Status of Cells during the Enzyme Biosynthesis. Mitkevich VA; Petrushanko IY; Poluektov YM; Burnysheva KM; Lakunina VA; Anashkina AA; Makarov AA Oxid Med Cell Longev; 2016; 2016():9092328. PubMed ID: 27239254 [TBL] [Abstract][Full Text] [Related]
6. [Enhancement of Na,K-ATPase Activity as a Result of Removal of Redox Modifications from Cysteine Residues of the al Subunit: the Effect of Reducing Agents]. Dergousova EA; Petrushanko IY; Klimanova EA; Mitkevich VA; Ziganshin RH; Lopina OD; Makarov AA Mol Biol (Mosk); 2018; 52(2):289-293. PubMed ID: 29695697 [TBL] [Abstract][Full Text] [Related]
7. Cross talk between S-nitrosylation and S-glutathionylation in control of the Na,K-ATPase regulation in hypoxic heart. Yakushev S; Band M; Tissot van Patot MC; Gassmann M; Avivi A; Bogdanova A Am J Physiol Heart Circ Physiol; 2012 Dec; 303(11):H1332-43. PubMed ID: 22982781 [TBL] [Abstract][Full Text] [Related]
8. Oxidative regulation of the Na(+)-K(+) pump in the cardiovascular system. Figtree GA; Keyvan Karimi G; Liu CC; Rasmussen HH Free Radic Biol Med; 2012 Dec; 53(12):2263-8. PubMed ID: 23085513 [TBL] [Abstract][Full Text] [Related]
9. Na⁺, K⁺-ATPase and Ca²⁺-ATPase activities in basal and microvillous syncytiotrophoblast membranes from preeclamptic human term placenta. Abad C; Vallejos C; De Gregorio N; Díaz P; Chiarello DI; Mendoza M; Piñero S; Proverbio T; Botana D; Rojas P; Riquelme G; Proverbio F; Marín R Hypertens Pregnancy; 2015 Feb; 34(1):65-79. PubMed ID: 25356531 [TBL] [Abstract][Full Text] [Related]
10. Silencing overexpression of FXYD3 protein in breast cancer cells amplifies effects of doxorubicin and γ-radiation on Na(+)/K(+)-ATPase and cell survival. Liu CC; Teh R; Mozar CA; Baxter RC; Rasmussen HH Breast Cancer Res Treat; 2016 Jan; 155(2):203-13. PubMed ID: 26740212 [TBL] [Abstract][Full Text] [Related]
11. Glutathionylation of Na,K-ATPase Alpha-Subunit Alters Enzyme Conformation and Sensitivity to Trypsinolysis. Dergousova EA; Poluektov YM; Klimanova EA; Petrushanko IY; Mitkevich VA; Makarov AA; Lopina OD Biochemistry (Mosc); 2018 Aug; 83(8):969-981. PubMed ID: 30208833 [TBL] [Abstract][Full Text] [Related]
12. Requirement of hydrogen peroxide and Sp1 in the stimulation of Na,K-ATPase by low potassium in MDCK epithelial cells. Yin W; Yin FZ; Shen WX; Cai BC; Hua ZC Int J Biochem Cell Biol; 2008; 40(5):942-53. PubMed ID: 18155951 [TBL] [Abstract][Full Text] [Related]
14. Preeclampsia and Na,K-ATPase activity of red blood cell ghosts from neonatal and maternal blood. Carreiras MM; Proverbio T; Proverbio F; Marín R Biol Neonate; 2001 Jan; 79(1):5-8. PubMed ID: 11150823 [TBL] [Abstract][Full Text] [Related]
15. Redox-dependent regulation of the Na⁺-K⁺ pump: new twists to an old target for treatment of heart failure. Liu CC; Fry NA; Hamilton EJ; Chia KK; Garcia A; Karimi Galougahi K; Figtree GA; Clarke RJ; Bundgaard H; Rasmussen HH J Mol Cell Cardiol; 2013 Aug; 61():94-101. PubMed ID: 23727392 [TBL] [Abstract][Full Text] [Related]
16. Angiotensin II inhibits Na+/K+ATPase activity in pulmonary artery smooth muscle cells via glutathionylation and with the involvement of a 15.6 kDa inhibitor protein. Rahaman SM; Dey K; Chakraborti T; Chakraborti S Indian J Biochem Biophys; 2015 Apr; 52(2):119-24. PubMed ID: 26118122 [TBL] [Abstract][Full Text] [Related]
17. Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion. Garcia A; Liu CC; Cornelius F; Clarke RJ; Rasmussen HH Biophys J; 2016 Mar; 110(5):1099-109. PubMed ID: 26958887 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of oxidative damage of dog kidney Na/K-ATPase. Boldyrev A; Kurella E Biochem Biophys Res Commun; 1996 May; 222(2):483-7. PubMed ID: 8670231 [TBL] [Abstract][Full Text] [Related]
19. Role of oxidative stress in ischemia-reperfusion-induced changes in Na+,K(+)-ATPase isoform expression in rat heart. Ostadal P; Elmoselhi AB; Zdobnicka I; Lukas A; Elimban V; Dhalla NS Antioxid Redox Signal; 2004 Oct; 6(5):914-23. PubMed ID: 15345151 [TBL] [Abstract][Full Text] [Related]
20. The Redox-Sensitive Na/K-ATPase Signaling in Uremic Cardiomyopathy. Liu J; Nie Y; Chaudhry M; Bai F; Chuang J; Sodhi K; Shapiro JI Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32069992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]