BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33616697)

  • 1. Degradation of the low-calorie sugar substitute 5-ketofructose by different bacteria.
    Schiessl J; Kosciow K; Garschagen LS; Hoffmann JJ; Heymuth J; Franke T; Deppenmeier U
    Appl Microbiol Biotechnol; 2021 Mar; 105(6):2441-2453. PubMed ID: 33616697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of the alternative sweetener 5-ketofructose from sucrose by fructose dehydrogenase and invertase producing Gluconobacter strains.
    Hoffmann JJ; Hövels M; Kosciow K; Deppenmeier U
    J Biotechnol; 2020 Jan; 307():164-174. PubMed ID: 31704125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of 5-ketofructose from fructose or sucrose using genetically modified Gluconobacter oxydans strains.
    Siemen A; Kosciow K; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1699-1710. PubMed ID: 29279957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of the potential sweetener 5-ketofructose from fructose in fed-batch cultivation with Gluconobacter oxydans.
    Herweg E; Schöpping M; Rohr K; Siemen A; Frank O; Hofmann T; Deppenmeier U; Büchs J
    Bioresour Technol; 2018 Jul; 259():164-172. PubMed ID: 29550669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel plasmid-free Gluconobacter oxydans strains for production of the natural sweetener 5-ketofructose.
    Battling S; Wohlers K; Igwe C; Kranz A; Pesch M; Wirtz A; Baumgart M; Büchs J; Bott M
    Microb Cell Fact; 2020 Mar; 19(1):54. PubMed ID: 32131833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5-ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase.
    Wohlers K; Wirtz A; Reiter A; Oldiges M; Baumgart M; Bott M
    Microb Biotechnol; 2021 Nov; 14(6):2592-2604. PubMed ID: 34437751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-Keto-D-Fructose, a Natural Diketone and Potential Sugar Substitute, Significantly Reduces the Viability of Prokaryotic and Eukaryotic Cells.
    Hövels M; Gallala N; Keriakes SL; König AP; Schiessl J; Laporte T; Kosciow K; Deppenmeier U
    Front Microbiol; 2022; 13():935062. PubMed ID: 35801101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient fermentation of 5-keto-D-fructose with Gluconobacter oxydans at different scales.
    Battling S; Engel T; Herweg E; Niehoff PJ; Pesch M; Scholand T; Schöpping M; Sonntag N; Büchs J
    Microb Cell Fact; 2022 Dec; 21(1):255. PubMed ID: 36496372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 5-Ketofructose Reductase of
    Nguyen TM; Goto M; Noda S; Matsutani M; Hodoya Y; Kataoka N; Adachi O; Matsushita K; Yakushi T
    J Bacteriol; 2021 Sep; 203(19):e0055820. PubMed ID: 34309403
    [No Abstract]   [Full Text] [Related]  

  • 10. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity.
    Payne AN; Chassard C; Lacroix C
    Obes Rev; 2012 Sep; 13(9):799-809. PubMed ID: 22686435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic consequences of a block in the synthesis of 5-keto-D-fructose in a mutant of Gluconobacter cerinus.
    Mowshowitz S; Englard S; Avigad G
    J Bacteriol; 1974 Aug; 119(2):363-70. PubMed ID: 4853173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-Keto-D-fructose production from sugar alcohol by isolated wild strain
    Adachi O; Nguyen TM; Hours RA; Kataoka N; Matsushita K; Akakabe Y; Yakushi T
    Biosci Biotechnol Biochem; 2020 Aug; 84(8):1745-1747. PubMed ID: 32427050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tunable L-arabinose-inducible expression plasmid for the acetic acid bacterium Gluconobacter oxydans.
    Fricke PM; Link T; Gätgens J; Sonntag C; Otto M; Bott M; Polen T
    Appl Microbiol Biotechnol; 2020 Nov; 104(21):9267-9282. PubMed ID: 32974745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria.
    Sainz F; Navarro D; Mateo E; Torija MJ; Mas A
    Int J Food Microbiol; 2016 Apr; 222():40-7. PubMed ID: 26848948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gluconobacter cerevisiae sp. nov., isolated from the brewery environment.
    Spitaels F; Wieme A; Balzarini T; Cleenwerck I; Van Landschoot A; De Vuyst L; Vandamme P
    Int J Syst Evol Microbiol; 2014 Apr; 64(Pt 4):1134-1141. PubMed ID: 24368694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H.
    Hölscher T; Görisch H
    J Bacteriol; 2006 Nov; 188(21):7668-76. PubMed ID: 16936032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of two aldo-keto reductases from Gluconobacter oxydans 621H capable of regio- and stereoselective alpha-ketocarbonyl reduction.
    Schweiger P; Gross H; Deppenmeier U
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1415-26. PubMed ID: 20414648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of aldehyde reductases from Gluconobacter oxydans 621H.
    Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1025-31. PubMed ID: 19644687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of D-Lactate as an Energy Source Supports the Growth of Gluconobacter oxydans.
    Sheng B; Xu J; Zhang Y; Jiang T; Deng S; Kong J; Gao C; Ma C; Xu P
    Appl Environ Microbiol; 2015 Jun; 81(12):4098-110. PubMed ID: 25862219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural sweeteners in a human diet.
    Grembecka M
    Rocz Panstw Zakl Hig; 2015; 66(3):195-202. PubMed ID: 26400114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.