These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33616761)

  • 1. Ridge energy for thin nematic polymer networks.
    Pedrini A; Virga EG
    Eur Phys J E Soft Matter; 2021 Feb; 44(1):7. PubMed ID: 33616761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition from isometric to stretching ridges in thin elastic films.
    Fuentealba JF; Albarrán O; Hamm E; Cerda E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032407. PubMed ID: 25871123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A blend of stretching and bending in nematic polymer networks.
    Ozenda O; Sonnet AM; Virga EG
    Soft Matter; 2020 Oct; 16(38):8877-8892. PubMed ID: 33026035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Ribbon Model for Nematic Polymer Networks.
    Singh H; Virga EG
    J Elast; 2023; 153(4-5):613-634. PubMed ID: 37293564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tug-of-war between stretching and bending in living cell sheets.
    Recho P; Fouchard J; Wyatt T; Khalilgharibi N; Charras G; Kabla A
    Phys Rev E; 2020 Jul; 102(1-1):012401. PubMed ID: 32795061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientational order and finite strain in nematic elastomers.
    Fried E; Sellers S
    J Chem Phys; 2005 Jul; 123(4):044901. PubMed ID: 16095386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometry of thin nematic elastomer sheets.
    Aharoni H; Sharon E; Kupferman R
    Phys Rev Lett; 2014 Dec; 113(25):257801. PubMed ID: 25554907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodic folding of viscous sheets.
    Ribe NM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036305. PubMed ID: 14524888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling of the buckling transition of ridges in thin sheets.
    DiDonna BA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016601. PubMed ID: 12241494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Buckling transition and boundary layer in non-Euclidean plates.
    Efrati E; Sharon E; Kupferman R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016602. PubMed ID: 19658827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of plasticity in crumpling of thin sheets.
    Tallinen T; Aström JA; Timonen J
    Nat Mater; 2009 Jan; 8(1):25-9. PubMed ID: 19060887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasting bending energies from bulk elastic theories.
    Wood HG; Hanna JA
    Soft Matter; 2019 Mar; 15(11):2411-2417. PubMed ID: 30778465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of wrinkling in ultrathin elastic sheets.
    Box F; O'Kiely D; Kodio O; Inizan M; Castrejón-Pita AA; Vella D
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20875-20880. PubMed ID: 31570627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incompatible strains associated with defects in nematic elastomers.
    Fried E; Sellers S
    J Chem Phys; 2006 Jan; 124(2):024908. PubMed ID: 16422649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Singularities, structures, and scaling in deformed m-dimensional elastic manifolds.
    DiDonna BA; Witten TA; Venkataramani SC; Kramer EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016603. PubMed ID: 11800807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous free-boundary structure in crumpled membranes.
    Witten TA
    J Phys Chem B; 2009 Mar; 113(12):3738-42. PubMed ID: 19673132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Landau-de Gennes model for nonuniform configurations in nematic liquid crystalline elastomers.
    Simões M; de Campos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061704. PubMed ID: 15244595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weak-anchoring effects in a thin pinned ridge of nematic liquid crystal.
    Cousins JRL; Bhadwal AS; Corson LT; Duffy BR; Sage IC; Brown CV; Mottram NJ; Wilson SK
    Phys Rev E; 2023 Mar; 107(3-1):034702. PubMed ID: 37073024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscous control of peeling an elastic sheet by bending and pulling.
    Lister JR; Peng GG; Neufeld JA
    Phys Rev Lett; 2013 Oct; 111(15):154501. PubMed ID: 24160604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isotropic-cholesteric transition of a weakly chiral elastomer cylinder.
    Xing X; Baskaran A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021709. PubMed ID: 18850854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.