These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 33617218)
1. Herboxidiene Features That Mediate Conformation-Dependent SF3B1 Interactions to Inhibit Splicing. Gamboa Lopez A; Allu SR; Mendez P; Chandrashekar Reddy G; Maul-Newby HM; Ghosh AK; Jurica MS ACS Chem Biol; 2021 Mar; 16(3):520-528. PubMed ID: 33617218 [TBL] [Abstract][Full Text] [Related]
2. Combined biochemical and electron microscopic analyses reveal the architecture of the mammalian U2 snRNP. Krämer A; Grüter P; Gröning K; Kastner B J Cell Biol; 1999 Jun; 145(7):1355-68. PubMed ID: 10385517 [TBL] [Abstract][Full Text] [Related]
3. U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors. Urabe VK; Stevers M; Ghosh AK; Jurica MS PLoS One; 2021; 16(10):e0258551. PubMed ID: 34648557 [TBL] [Abstract][Full Text] [Related]
4. The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Folco EG; Coil KE; Reed R Genes Dev; 2011 Mar; 25(5):440-4. PubMed ID: 21363962 [TBL] [Abstract][Full Text] [Related]
5. Complex assembly mechanism and an RNA-binding mode of the human p14-SF3b155 spliceosomal protein complex identified by NMR solution structure and functional analyses. Kuwasako K; Dohmae N; Inoue M; Shirouzu M; Taguchi S; Güntert P; Séraphin B; Muto Y; Yokoyama S Proteins; 2008 Jun; 71(4):1617-36. PubMed ID: 18076038 [TBL] [Abstract][Full Text] [Related]
6. Identification of SAP155 as the target of GEX1A (Herboxidiene), an antitumor natural product. Hasegawa M; Miura T; Kuzuya K; Inoue A; Won Ki S; Horinouchi S; Yoshida T; Kunoh T; Koseki K; Mino K; Sasaki R; Yoshida M; Mizukami T ACS Chem Biol; 2011 Mar; 6(3):229-33. PubMed ID: 21138297 [TBL] [Abstract][Full Text] [Related]
7. Interaction of mammalian splicing factor SF3a with U2 snRNP and relation of its 60-kD subunit to yeast PRP9. Brosi R; Gröning K; Behrens SE; Lührmann R; Krämer A Science; 1993 Oct; 262(5130):102-5. PubMed ID: 8211112 [TBL] [Abstract][Full Text] [Related]
8. Structural basis of branch site recognition by the human spliceosome. Tholen J; Razew M; Weis F; Galej WP Science; 2022 Jan; 375(6576):50-57. PubMed ID: 34822310 [TBL] [Abstract][Full Text] [Related]
9. Major conformational change in the complex SF3b upon integration into the spliceosomal U11/U12 di-snRNP as revealed by electron cryomicroscopy. Golas MM; Sander B; Will CL; Lührmann R; Stark H Mol Cell; 2005 Mar; 17(6):869-83. PubMed ID: 15780942 [TBL] [Abstract][Full Text] [Related]
10. Molecular architecture of the human 17S U2 snRNP. Zhang Z; Will CL; Bertram K; Dybkov O; Hartmuth K; Agafonov DE; Hofele R; Urlaub H; Kastner B; Lührmann R; Stark H Nature; 2020 Jul; 583(7815):310-313. PubMed ID: 32494006 [TBL] [Abstract][Full Text] [Related]
11. Structural basis of intron selection by U2 snRNP in the presence of covalent inhibitors. Cretu C; Gee P; Liu X; Agrawal A; Nguyen TV; Ghosh AK; Cook A; Jurica M; Larsen NA; Pena V Nat Commun; 2021 Jul; 12(1):4491. PubMed ID: 34301950 [TBL] [Abstract][Full Text] [Related]
12. Chemical Inhibition of Pre-mRNA Splicing in Living Saccharomyces cerevisiae. Hansen SR; Nikolai BJ; Spreacker PJ; Carrocci TJ; Hoskins AA Cell Chem Biol; 2019 Mar; 26(3):443-448.e3. PubMed ID: 30639260 [TBL] [Abstract][Full Text] [Related]
13. Coherence between cellular responses and in vitro splicing inhibition for the anti-tumor drug pladienolide B and its analogs. Effenberger KA; Anderson DD; Bray WM; Prichard BE; Ma N; Adams MS; Ghosh AK; Jurica MS J Biol Chem; 2014 Jan; 289(4):1938-47. PubMed ID: 24302718 [TBL] [Abstract][Full Text] [Related]
14. Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A-SF3b complex. Teng T; Tsai JH; Puyang X; Seiler M; Peng S; Prajapati S; Aird D; Buonamici S; Caleb B; Chan B; Corson L; Feala J; Fekkes P; Gerard B; Karr C; Korpal M; Liu X; T Lowe J; Mizui Y; Palacino J; Park E; Smith PG; Subramanian V; Wu ZJ; Zou J; Yu L; Chicas A; Warmuth M; Larsen N; Zhu P Nat Commun; 2017 May; 8():15522. PubMed ID: 28541300 [TBL] [Abstract][Full Text] [Related]
15. Spliceostatin A inhibits spliceosome assembly subsequent to prespliceosome formation. Roybal GA; Jurica MS Nucleic Acids Res; 2010 Oct; 38(19):6664-72. PubMed ID: 20529876 [TBL] [Abstract][Full Text] [Related]
16. Prespliceosome structure provides insights into spliceosome assembly and regulation. Plaschka C; Lin PC; Charenton C; Nagai K Nature; 2018 Jul; 559(7714):419-422. PubMed ID: 29995849 [TBL] [Abstract][Full Text] [Related]
17. Molecular architecture of the multiprotein splicing factor SF3b. Golas MM; Sander B; Will CL; Lührmann R; Stark H Science; 2003 May; 300(5621):980-4. PubMed ID: 12738865 [TBL] [Abstract][Full Text] [Related]
18. Evidence that sequence-independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of spliceosomal complex A. Gozani O; Feld R; Reed R Genes Dev; 1996 Jan; 10(2):233-43. PubMed ID: 8566756 [TBL] [Abstract][Full Text] [Related]
19. Molecular Architecture of SF3b and Structural Consequences of Its Cancer-Related Mutations. Cretu C; Schmitzová J; Ponce-Salvatierra A; Dybkov O; De Laurentiis EI; Sharma K; Will CL; Urlaub H; Lührmann R; Pena V Mol Cell; 2016 Oct; 64(2):307-319. PubMed ID: 27720643 [TBL] [Abstract][Full Text] [Related]