These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33617229)

  • 1. Single Out-of-Resonance Dielectric Nanoparticles as Molecular Sensors.
    Celiksoy S; Ye W; Ahijado-Guzmán R; Sönnichsen C
    ACS Sens; 2021 Mar; 6(3):716-721. PubMed ID: 33617229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensity-Based Single Particle Plasmon Sensing.
    Celiksoy S; Ye W; Wandner K; Kaefer K; Sönnichsen C
    Nano Lett; 2021 Mar; 21(5):2053-2058. PubMed ID: 33617258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes.
    Truong PL; Ma X; Sim SJ
    Nanoscale; 2014 Feb; 6(4):2307-15. PubMed ID: 24413584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-particle correlation study: chemical interface damping induced by biotinylated proteins with sulfur in plasmonic gold nanorods.
    Moon SW; Ha JW
    Phys Chem Chem Phys; 2019 Mar; 21(13):7061-7066. PubMed ID: 30874711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing.
    Otte MA; Sepúlveda B; Ni W; Juste JP; Liz-Marzán LM; Lechuga LM
    ACS Nano; 2010 Jan; 4(1):349-57. PubMed ID: 19947647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape effect on a single-nanoparticle-based plasmonic nanosensor.
    Shen H; Lu G; Zhang T; Liu J; Gu Y; Perriat P; Martini M; Tillement O; Gong Q
    Nanotechnology; 2013 Jul; 24(28):285502. PubMed ID: 23792456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observing plasmonic-molecular resonance coupling on single gold nanorods.
    Ni W; Ambjörnsson T; Apell SP; Chen H; Wang J
    Nano Lett; 2010 Jan; 10(1):77-84. PubMed ID: 19957966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free plasmonic detection of biomolecular binding by a single gold nanorod.
    Nusz GJ; Marinakos SM; Curry AC; Dahlin A; Höök F; Wax A; Chilkoti A
    Anal Chem; 2008 Feb; 80(4):984-9. PubMed ID: 18197636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM; Lazarides AA
    J Phys Chem B; 2005 Nov; 109(46):21556-65. PubMed ID: 16853799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New type high-index dielectric nanosensors based on the scattering intensity shift.
    Yan J; Liu P; Lin Z; Yang G
    Nanoscale; 2016 Mar; 8(11):5996-6007. PubMed ID: 26926420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three dimensional sensitivity characterization of plasmonic nanorods for refractometric biosensors.
    Leitgeb V; Trügler A; Köstler S; Krug MK; Hohenester U; Hohenau A; Leitner A; Krenn JR
    Nanoscale; 2016 Feb; 8(5):2974-81. PubMed ID: 26781940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensing using localised surface plasmon resonance sensors.
    Szunerits S; Boukherroub R
    Chem Commun (Camb); 2012 Sep; 48(72):8999-9010. PubMed ID: 22806135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout.
    Taylor AB; Kim J; Chon JW
    Opt Express; 2012 Feb; 20(5):5069-81. PubMed ID: 22418312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design Principles for Sensitivity Optimization in Plasmonic Hydrogen Sensors.
    Sterl F; Strohfeldt N; Both S; Herkert E; Weiss T; Giessen H
    ACS Sens; 2020 Apr; 5(4):917-927. PubMed ID: 31997641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dark-field microscopy studies of polarization-dependent plasmonic resonance of single gold nanorods: rainbow nanoparticles.
    Huang Y; Kim DH
    Nanoscale; 2011 Aug; 3(8):3228-32. PubMed ID: 21698325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study.
    Novo C; Gomez D; Perez-Juste J; Zhang Z; Petrova H; Reismann M; Mulvaney P; Hartland GV
    Phys Chem Chem Phys; 2006 Aug; 8(30):3540-6. PubMed ID: 16871343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods.
    Juvé V; Cardinal MF; Lombardi A; Crut A; Maioli P; Pérez-Juste J; Liz-Marzán LM; Del Fatti N; Vallée F
    Nano Lett; 2013 May; 13(5):2234-40. PubMed ID: 23611370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.