These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 33617523)

  • 1. Rapid 3D phenotypic analysis of neurons and organoids using data-driven cell segmentation-free machine learning.
    Mergenthaler P; Hariharan S; Pemberton JM; Lourenco C; Penn LZ; Andrews DW
    PLoS Comput Biol; 2021 Feb; 17(2):e1008630. PubMed ID: 33617523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MOrgAna: accessible quantitative analysis of organoids with machine learning.
    Gritti N; Lim JL; Anlaş K; Pandya M; Aalderink G; Martínez-Ara G; Trivedi V
    Development; 2021 Sep; 148(18):. PubMed ID: 34494114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning and computer vision approaches for phenotypic profiling.
    Grys BT; Lo DS; Sahin N; Kraus OZ; Morris Q; Boone C; Andrews BJ
    J Cell Biol; 2017 Jan; 216(1):65-71. PubMed ID: 27940887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VAST (Volume Annotation and Segmentation Tool): Efficient Manual and Semi-Automatic Labeling of Large 3D Image Stacks.
    Berger DR; Seung HS; Lichtman JW
    Front Neural Circuits; 2018; 12():88. PubMed ID: 30386216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput formation and image-based analysis of basal-in mammary organoids in 384-well plates.
    Lee S; Chang J; Kang SM; Parigoris E; Lee JH; Huh YS; Takayama S
    Sci Rep; 2022 Jan; 12(1):317. PubMed ID: 35013350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation-Less, Automated, Vascular Vectorization.
    Mihelic SA; Sikora WA; Hassan AM; Williamson MR; Jones TA; Dunn AK
    PLoS Comput Biol; 2021 Oct; 17(10):e1009451. PubMed ID: 34624013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization and correction of automated segmentation, tracking and lineaging from 5-D stem cell image sequences.
    Wait E; Winter M; Bjornsson C; Kokovay E; Wang Y; Goderie S; Temple S; Cohen AR
    BMC Bioinformatics; 2014 Oct; 15(1):328. PubMed ID: 25281197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer vision for high content screening.
    Kraus OZ; Frey BJ
    Crit Rev Biochem Mol Biol; 2016; 51(2):102-9. PubMed ID: 26806341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning-based CT texture analysis to predict HPV status in oropharyngeal squamous cell carcinoma: comparison of 2D and 3D segmentation.
    Ren J; Yuan Y; Qi M; Tao X
    Eur Radiol; 2020 Dec; 30(12):6858-6866. PubMed ID: 32591885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation.
    Zeng T; Wu B; Ji S
    Bioinformatics; 2017 Aug; 33(16):2555-2562. PubMed ID: 28379412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated sorting of neuronal trees in fluorescent images of neuronal networks using NeuroTreeTracer.
    Kayasandik C; Negi P; Laezza F; Papadakis M; Labate D
    Sci Rep; 2018 Apr; 8(1):6450. PubMed ID: 29691458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Phenotypic Image Analysis of Three-Dimensional Organotypic Cultures.
    Åkerfelt M; Toriseva M; Nees M
    Methods Mol Biol; 2017; 1612():433-445. PubMed ID: 28634961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution 3D imaging of fixed and cleared organoids.
    Dekkers JF; Alieva M; Wellens LM; Ariese HCR; Jamieson PR; Vonk AM; Amatngalim GD; Hu H; Oost KC; Snippert HJG; Beekman JM; Wehrens EJ; Visvader JE; Clevers H; Rios AC
    Nat Protoc; 2019 Jun; 14(6):1756-1771. PubMed ID: 31053799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From voxels to knowledge: a practical guide to the segmentation of complex electron microscopy 3D-data.
    Tsai WT; Hassan A; Sarkar P; Correa J; Metlagel Z; Jorgens DM; Auer M
    J Vis Exp; 2014 Aug; (90):e51673. PubMed ID: 25145678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated Cytometry With Machine Learning Applied to High-Content Imaging of Human Kidney Tissue for In Situ Cell Classification and Neighborhood Analysis.
    Winfree S; McNutt AT; Khochare S; Borgard TJ; Barwinska D; Sabo AR; Ferkowicz MJ; Williams JC; Lingeman JE; Gulbronson CJ; Kelly KJ; Sutton TA; Dagher PC; Eadon MT; Dunn KW; El-Achkar TM
    Lab Invest; 2023 Jun; 103(6):100104. PubMed ID: 36867975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning.
    Wu J; Ma YB; Congdon C; Brett B; Chen S; Xu Y; Ouyang Q; Mao Y
    PLoS One; 2017; 12(8):e0182130. PubMed ID: 28786986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CytoCensus, mapping cell identity and division in tissues and organs using machine learning.
    Hailstone M; Waithe D; Samuels TJ; Yang L; Costello I; Arava Y; Robertson E; Parton RM; Davis I
    Elife; 2020 May; 9():. PubMed ID: 32423529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Neuron Detection in High-Content Fluorescence Microscopy Images Using Machine Learning.
    Mata G; Radojević M; Fernandez-Lozano C; Smal I; Werij N; Morales M; Meijering E; Rubio J
    Neuroinformatics; 2019 Apr; 17(2):253-269. PubMed ID: 30215167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GIANI - open-source software for automated analysis of 3D microscopy images.
    Barry DJ; Gerri C; Bell DM; D'Antuono R; Niakan KK
    J Cell Sci; 2022 May; 135(10):. PubMed ID: 35502739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling.
    Tang J; Enderling H; Becker-Weimann S; Pham C; Polyzos A; Chen CY; Costes SV
    Integr Biol (Camb); 2011 Apr; 3(4):408-21. PubMed ID: 21373705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.