BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33617893)

  • 1. The delta isoform of phosphatidylinositol-3-kinase predominates in chronic myelomonocytic leukemia and can be targeted effectively with umbralisib and ruxolitinib.
    Villaume MT; Arrate MP; Ramsey HE; Sunthankar KI; Jenkins MT; Moyo TK; Smith BN; Fischer MA; Childress MA; Gorska AE; Ferrell PB; Savona MR
    Exp Hematol; 2021 May; 97():57-65.e5. PubMed ID: 33617893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated Human and Murine Clinical Study Establishes Clinical Efficacy of Ruxolitinib in Chronic Myelomonocytic Leukemia.
    Hunter AM; Newman H; Dezern AE; Steensma DP; Niyongere S; Roboz GJ; Mo Q; Chan O; Gerds A; Sallman DA; Dominguez-Viqueira W; Letson C; Balasis ME; Ball M; Kruer T; Zhang H; Lancet JE; List AF; Sekeres MA; Komrokji RS; Padron E
    Clin Cancer Res; 2021 Nov; 27(22):6095-6105. PubMed ID: 34253584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Management and Outcomes of Blast Transformed Chronic Myelomonocytic Leukemia.
    Hammond D; Montalban-Bravo G
    Curr Hematol Malig Rep; 2021 Oct; 16(5):405-417. PubMed ID: 34499330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo effects of JAK2 inhibition in chronic myelomonocytic leukemia.
    Geissler K; Jäger E; Barna A; Sliwa T; Knöbl P; Schwarzinger I; Gisslinger H; Valent P
    Eur J Haematol; 2016 Dec; 97(6):562-567. PubMed ID: 27157043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multi-Institution Phase I Trial of Ruxolitinib in Patients with Chronic Myelomonocytic Leukemia (CMML).
    Padron E; Dezern A; Andrade-Campos M; Vaddi K; Scherle P; Zhang Q; Ma Y; Balasis ME; Tinsley S; Ramadan H; Zimmerman C; Steensma DP; Roboz GJ; Lancet JE; List AF; Sekeres MA; Komrokji RS;
    Clin Cancer Res; 2016 Aug; 22(15):3746-54. PubMed ID: 26858309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PI3K isoform inhibition associated with anti Bcr-Abl drugs shows in vitro increased anti-leukemic activity in Philadelphia chromosome-positive B-acute lymphoblastic leukemia cell lines.
    Ultimo S; Simioni C; Martelli AM; Zauli G; Evangelisti C; Celeghini C; McCubrey JA; Marisi G; Ulivi P; Capitani S; Neri LM
    Oncotarget; 2017 Apr; 8(14):23213-23227. PubMed ID: 28390196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual PI3K/mTOR inhibitor PKI-402 suppresses the growth of ovarian cancer cells by degradation of Mcl-1 through autophagy.
    Hu X; Xia M; Wang J; Yu H; Chai J; Zhang Z; Sun Y; Su J; Sun L
    Biomed Pharmacother; 2020 Sep; 129():110397. PubMed ID: 32585451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A phase I trial of the aurora kinase inhibitor, ENMD-2076, in patients with relapsed or refractory acute myeloid leukemia or chronic myelomonocytic leukemia.
    Yee KW; Chen HW; Hedley DW; Chow S; Brandwein J; Schuh AC; Schimmer AD; Gupta V; Sanfelice D; Johnson T; Le LW; Arnott J; Bray MR; Sidor C; Minden MD
    Invest New Drugs; 2016 Oct; 34(5):614-24. PubMed ID: 27406088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous inhibition of pan-phosphatidylinositol-3-kinases and MEK as a potential therapeutic strategy in peripheral T-cell lymphomas.
    Martín-Sánchez E; Rodríguez-Pinilla SM; Sánchez-Beato M; Lombardía L; Domínguez-González B; Romero D; Odqvist L; García-Sanz P; Wozniak MB; Kurz G; Blanco-Aparicio C; Mollejo M; Alves FJ; Menárguez J; González-Palacios F; Rodríguez-Peralto JL; Ortiz-Romero PL; García JF; Bischoff JR; Piris MA
    Haematologica; 2013 Jan; 98(1):57-64. PubMed ID: 22801959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Significance and application value of multiparameter flow cytometry for differentiation of immunophenotype in chronic myelomonocytic leukemia, myelodysplastic syndrome and acute monocytic leukemia].
    Wang YX; Zhang JH; Hu YP; Cao FF; Zhang N; Chen F; Liu X; Zhang MY
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2012 Aug; 20(4):857-62. PubMed ID: 22931642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SHC014748M, a novel selective inhi-bitor of PI3Kδ, demonstrates promising preclinical antitumor activity in B cell lymphomas and chronic lymphocytic leukemia.
    Fan L; Wang C; Zhao L; Wang Z; Zhang X; Liu X; Cao L; Xu W; Li J
    Neoplasia; 2020 Dec; 22(12):714-724. PubMed ID: 33142237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic efficacy of the dual PI3K-δ/γ inhibitor duvelisib with the Bcl-2 inhibitor venetoclax in Richter syndrome PDX models.
    Iannello A; Vitale N; Coma S; Arruga F; Chadburn A; Di Napoli A; Laudanna C; Allan JN; Furman RR; Pachter JA; Deaglio S; Vaisitti T
    Blood; 2021 Jun; 137(24):3378-3389. PubMed ID: 33786583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras.
    Akutagawa J; Huang TQ; Epstein I; Chang T; Quirindongo-Crespo M; Cottonham CL; Dail M; Slusher BS; Friedman LS; Sampath D; Braun BS
    Leukemia; 2016 Jun; 30(6):1335-43. PubMed ID: 26965285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interleukin-6 mediates resistance to PI3K-pathway-targeted therapy in lymphoma.
    Kim JH; Kim WS; Park C
    BMC Cancer; 2019 Oct; 19(1):936. PubMed ID: 31601188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination treatment for myeloproliferative neoplasms using JAK and pan-class I PI3K inhibitors.
    Choong ML; Pecquet C; Pendharkar V; Diaconu CC; Yong JW; Tai SJ; Wang SF; Defour JP; Sangthongpitag K; Villeval JL; Vainchenker W; Constantinescu SN; Lee MA
    J Cell Mol Med; 2013 Nov; 17(11):1397-409. PubMed ID: 24251790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phosphoinositide-3-kinase (PI3K)-delta and gamma inhibitor, IPI-145 (Duvelisib), overcomes signals from the PI3K/AKT/S6 pathway and promotes apoptosis in CLL.
    Balakrishnan K; Peluso M; Fu M; Rosin NY; Burger JA; Wierda WG; Keating MJ; Faia K; O'Brien S; Kutok JL; Gandhi V
    Leukemia; 2015 Sep; 29(9):1811-22. PubMed ID: 25917267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survivin expression, apoptosis and proliferation in chronic myelomonocytic leukemia.
    Invernizzi R; Travaglino E; Benatti C; Malcovati L; Della Porta M; Cazzola M; Ascari E
    Eur J Haematol; 2006 Jun; 76(6):494-501. PubMed ID: 16529600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using patient-derived iPSCs to develop humanized mouse models for chronic myelomonocytic leukemia and therapeutic drug identification, including liposomal clodronate.
    Taoka K; Arai S; Kataoka K; Hosoi M; Miyauchi M; Yamazaki S; Honda A; Aixinjueluo W; Kobayashi T; Kumano K; Yoshimi A; Otsu M; Niwa A; Nakahata T; Nakauchi H; Kurokawa M
    Sci Rep; 2018 Oct; 8(1):15855. PubMed ID: 30367142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-targeting the PI3K/mTOR and JAK2 signalling pathways produces synergistic activity against myeloproliferative neoplasms.
    Bartalucci N; Tozzi L; Bogani C; Martinelli S; Rotunno G; Villeval JL; Vannucchi AM
    J Cell Mol Med; 2013 Nov; 17(11):1385-96. PubMed ID: 24237791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological inhibition of the MEK5/ERK5 and PI3K/Akt signaling pathways synergistically reduces viability in triple-negative breast cancer.
    Wright TD; Raybuck C; Bhatt A; Monlish D; Chakrabarty S; Wendekier K; Gartland N; Gupta M; Burow ME; Flaherty PT; Cavanaugh JE
    J Cell Biochem; 2020 Feb; 121(2):1156-1168. PubMed ID: 31464004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.