BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33618145)

  • 1. A deep learning model (ALNet) for the diagnosis of acute leukaemia lineage using peripheral blood cell images.
    Boldú L; Merino A; Acevedo A; Molina A; Rodellar J
    Comput Methods Programs Biomed; 2021 Apr; 202():105999. PubMed ID: 33618145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of peripheral blood cell images using convolutional neural networks.
    Acevedo A; Alférez S; Merino A; Puigví L; Rodellar J
    Comput Methods Programs Biomed; 2019 Oct; 180():105020. PubMed ID: 31425939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic recognition of different types of acute leukaemia in peripheral blood by image analysis.
    Boldú L; Merino A; Alférez S; Molina A; Acevedo A; Rodellar J
    J Clin Pathol; 2019 Nov; 72(11):755-761. PubMed ID: 31256009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic generation of artificial images of leukocytes and leukemic cells using generative adversarial networks (syntheticcellgan).
    Barrera K; Merino A; Molina A; Rodellar J
    Comput Methods Programs Biomed; 2023 Feb; 229():107314. PubMed ID: 36565666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnosing acute promyelocytic leukemia by using convolutional neural network.
    Ouyang N; Wang W; Ma L; Wang Y; Chen Q; Yang S; Xie J; Su S; Cheng Y; Cheng Q; Zheng L; Yuan Y
    Clin Chim Acta; 2021 Jan; 512():1-6. PubMed ID: 33159948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a machine-learning model based on laboratory parameters for the prediction of acute leukaemia subtypes: a multicentre model development and validation study in France.
    Alcazer V; Le Meur G; Roccon M; Barriere S; Le Calvez B; Badaoui B; Spaeth A; Kosmider O; Freynet N; Eveillard M; Croizier C; Chevalier S; Sujobert P
    Lancet Digit Health; 2024 May; 6(5):e323-e333. PubMed ID: 38670741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of the Acute Lymphoblastic Leukemia Detection by Convolutional Neural Networks (CNNs).
    Albeeshi AA; Alshanbari HS
    Curr Med Imaging; 2023; 19(7):734-748. PubMed ID: 36239727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial intelligence-assisted diagnosis of hematologic diseases based on bone marrow smears using deep neural networks.
    Wang W; Luo M; Guo P; Wei Y; Tan Y; Shi H
    Comput Methods Programs Biomed; 2023 Apr; 231():107343. PubMed ID: 36821974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biological properties and sensitivity to induction therapy of differentiated cells expressing atypical immunophenotype in acute leukemia of children].
    Pituch-Noworolska A
    Folia Med Cracov; 2001; 42(3):5-80. PubMed ID: 12353422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning-Based Methods for Automatic Diagnosis of Skin Lesions.
    El-Khatib H; Popescu D; Ichim L
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32245258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnosis of Leukaemia in Blood Slides Based on a Fine-Tuned and Highly Generalisable Deep Learning Model.
    Vogado L; Veras R; Aires K; Araújo F; Silva R; Ponti M; Tavares JMRS
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33923209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LeuFeatx: Deep learning-based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear.
    Rastogi P; Khanna K; Singh V
    Comput Biol Med; 2022 Mar; 142():105236. PubMed ID: 35066445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. COVID-19 Pneumonia Diagnosis Using a Simple 2D Deep Learning Framework With a Single Chest CT Image: Model Development and Validation.
    Ko H; Chung H; Kang WS; Kim KW; Shin Y; Kang SJ; Lee JH; Kim YJ; Kim NY; Jung H; Lee J
    J Med Internet Res; 2020 Jun; 22(6):e19569. PubMed ID: 32568730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intra-nucleus mosaic pattern (InMop) and whole-cell Haralick combined-descriptor for identifying and characterizing acute leukemia blasts on single cell peripheral blood images.
    Tarquino J; Arabyarmohammadi S; Tejada RE; Madabhushi A; Romero E
    Cytometry A; 2023 Nov; 103(11):857-867. PubMed ID: 37565838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of deep learning training strategies for the classification of bone marrow cell images.
    Glüge S; Balabanov S; Koelzer VH; Ott T
    Comput Methods Programs Biomed; 2024 Jan; 243():107924. PubMed ID: 37979517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hematologist-Level Deep Learning Algorithm (BMSNet) for Assessing the Morphologies of Single Nuclear Balls in Bone Marrow Smears: Algorithm Development.
    Wu YY; Huang TC; Ye RH; Fang WH; Lai SW; Chang PY; Liu WN; Kuo TY; Lee CH; Tsai WC; Lin C
    JMIR Med Inform; 2020 Apr; 8(4):e15963. PubMed ID: 32267237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Neural Networks for Dental Implant System Classification.
    Sukegawa S; Yoshii K; Hara T; Yamashita K; Nakano K; Yamamoto N; Nagatsuka H; Furuki Y
    Biomolecules; 2020 Jul; 10(7):. PubMed ID: 32630195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic classification and segmentation of blast cells using deep transfer learning and active contours.
    Ametefe DS; Sarnin SS; Ali DM; Ametefe GD; John D; Aliu AA; Zoreno Z
    Int J Lab Hematol; 2024 May; ():. PubMed ID: 38726705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. White blood cells identification system based on convolutional deep neural learning networks.
    Shahin AI; Guo Y; Amin KM; Sharawi AA
    Comput Methods Programs Biomed; 2019 Jan; 168():69-80. PubMed ID: 29173802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.