These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 33618240)
1. Improved nanomechanical and in-vitro biocompatibility of graphene oxide-carbon nanotube hydroxyapatite hybrid composites by synergistic effect. Jyoti J; Kiran A; Sandhu M; Kumar A; Singh BP; Kumar N J Mech Behav Biomed Mater; 2021 May; 117():104376. PubMed ID: 33618240 [TBL] [Abstract][Full Text] [Related]
2. In-vitro cell adhesion and proliferation of adipose derived stem cell on hydroxyapatite composite surfaces. Pulyala P; Singh A; Dias-Netipanyj MF; Cogo SC; Santos LS; Soares P; Gopal V; Suganthan V; Manivasagam G; Popat KC Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1305-1316. PubMed ID: 28415420 [TBL] [Abstract][Full Text] [Related]
3. Carbon nanotube-reinforced mesoporous hydroxyapatite composites with excellent mechanical and biological properties for bone replacement material application. Li H; Song X; Li B; Kang J; Liang C; Wang H; Yu Z; Qiao Z Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1078-1087. PubMed ID: 28531981 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous engineering of nanofillers and patterned surface macropores of graphene/hydroxyapatite/polyetheretherketone ternary composites for potential bone implants. Huang Z; Wan Y; Zhu X; Zhang P; Yang Z; Yao F; Luo H Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111967. PubMed ID: 33812595 [TBL] [Abstract][Full Text] [Related]
5. Multi-length scale strengthening and cytocompatibility of ultra high molecular weight polyethylene bio-composites by functionalized carbon nanotube and hydroxyapatite reinforcement. Nayak C; Kushram P; Zaidi MAA; Singh I; Sen J; Balani K J Mech Behav Biomed Mater; 2023 Apr; 140():105694. PubMed ID: 36841125 [TBL] [Abstract][Full Text] [Related]
6. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Gao C; Feng P; Peng S; Shuai C Acta Biomater; 2017 Oct; 61():1-20. PubMed ID: 28501710 [TBL] [Abstract][Full Text] [Related]
7. In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. Li M; Wang Y; Liu Q; Li Q; Cheng Y; Zheng Y; Xi T; Wei S J Mater Chem B; 2013 Jan; 1(4):475-484. PubMed ID: 32260818 [TBL] [Abstract][Full Text] [Related]
8. Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite. Neelgund GM; Oki AR J Colloid Interface Sci; 2016 Dec; 484():135-145. PubMed ID: 27599382 [TBL] [Abstract][Full Text] [Related]
9. Graphene Oxide/Chitosan/Hydroxyapatite Composite Membranes Enhance Osteoblast Adhesion and Guided Bone Regeneration. Liu S; Li Z; Wang Q; Han J; Wang W; Li S; Liu H; Guo S; Zhang J; Ge K; Zhou G ACS Appl Bio Mater; 2021 Nov; 4(11):8049-8059. PubMed ID: 35006786 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Katti KS; Katti DR; Dash R Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898 [TBL] [Abstract][Full Text] [Related]
11. In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold. Shuai C; Peng B; Feng P; Yu L; Lai R; Min A J Adv Res; 2022 Jan; 35():13-24. PubMed ID: 35024192 [TBL] [Abstract][Full Text] [Related]
12. In situ syntheses of hydroxyapatite-grafted graphene oxide composites. Iacoboni I; Perrozzi F; Macera L; Taglieri G; Ottaviano L; Fioravanti G J Biomed Mater Res A; 2019 Sep; 107(9):2026-2039. PubMed ID: 31077552 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites. Mehrali M; Moghaddam E; Shirazi SF; Baradaran S; Mehrali M; Latibari ST; Metselaar HS; Kadri NA; Zandi K; Osman NA ACS Appl Mater Interfaces; 2014 Mar; 6(6):3947-62. PubMed ID: 24588873 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and characterization of hydroxyapatite self-assembled nanocomposites on graphene oxide sheets from seashell waste: A green process for regenerative medicine. Sampath V; Krishnasamy V J Mech Behav Biomed Mater; 2024 Mar; 151():106383. PubMed ID: 38218046 [TBL] [Abstract][Full Text] [Related]
15. Carbon nanotube-reinforced hydroxyapatite composite and their interaction with human osteoblast in vitro. Khalid P; Hussain MA; Rekha PD; Arun AB Hum Exp Toxicol; 2015 May; 34(5):548-56. PubMed ID: 25233896 [TBL] [Abstract][Full Text] [Related]
16. Bioactivity in in situ hydroxyapatite-polycaprolactone composites. Verma D; Katti K; Katti D J Biomed Mater Res A; 2006 Sep; 78(4):772-80. PubMed ID: 16739180 [TBL] [Abstract][Full Text] [Related]
17. Physicochemical properties of nanocomposite: Hydroxyapatite in reduced graphene oxide. Rajesh A; Mangamma G; Sairam TN; Subramanian S; Kalavathi S; Kamruddin M; Dash S Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():203-210. PubMed ID: 28482518 [TBL] [Abstract][Full Text] [Related]
18. Enhanced bone regeneration with carbon nanotube reinforced hydroxyapatite in animal model. Mukherjee S; Nandi SK; Kundu B; Chanda A; Sen S; Das PK J Mech Behav Biomed Mater; 2016 Jul; 60():243-255. PubMed ID: 26907099 [TBL] [Abstract][Full Text] [Related]
19. Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement. Gonçalves G; Cruz SM; Ramalho A; Grácio J; Marques PA Nanoscale; 2012 Apr; 4(9):2937-45. PubMed ID: 22499394 [TBL] [Abstract][Full Text] [Related]
20. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite-polyetheretherketone scaffolds. Feng P; Peng S; Wu P; Gao C; Huang W; Deng Y; Xiao T; Shuai C Int J Nanomedicine; 2016; 11():3487-500. PubMed ID: 27555770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]