BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33618240)

  • 1. Improved nanomechanical and in-vitro biocompatibility of graphene oxide-carbon nanotube hydroxyapatite hybrid composites by synergistic effect.
    Jyoti J; Kiran A; Sandhu M; Kumar A; Singh BP; Kumar N
    J Mech Behav Biomed Mater; 2021 May; 117():104376. PubMed ID: 33618240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-vitro cell adhesion and proliferation of adipose derived stem cell on hydroxyapatite composite surfaces.
    Pulyala P; Singh A; Dias-Netipanyj MF; Cogo SC; Santos LS; Soares P; Gopal V; Suganthan V; Manivasagam G; Popat KC
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1305-1316. PubMed ID: 28415420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube-reinforced mesoporous hydroxyapatite composites with excellent mechanical and biological properties for bone replacement material application.
    Li H; Song X; Li B; Kang J; Liang C; Wang H; Yu Z; Qiao Z
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1078-1087. PubMed ID: 28531981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous engineering of nanofillers and patterned surface macropores of graphene/hydroxyapatite/polyetheretherketone ternary composites for potential bone implants.
    Huang Z; Wan Y; Zhu X; Zhang P; Yang Z; Yao F; Luo H
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111967. PubMed ID: 33812595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-length scale strengthening and cytocompatibility of ultra high molecular weight polyethylene bio-composites by functionalized carbon nanotube and hydroxyapatite reinforcement.
    Nayak C; Kushram P; Zaidi MAA; Singh I; Sen J; Balani K
    J Mech Behav Biomed Mater; 2023 Apr; 140():105694. PubMed ID: 36841125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair.
    Gao C; Feng P; Peng S; Shuai C
    Acta Biomater; 2017 Oct; 61():1-20. PubMed ID: 28501710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide.
    Li M; Wang Y; Liu Q; Li Q; Cheng Y; Zheng Y; Xi T; Wei S
    J Mater Chem B; 2013 Jan; 1(4):475-484. PubMed ID: 32260818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite.
    Neelgund GM; Oki AR
    J Colloid Interface Sci; 2016 Dec; 484():135-145. PubMed ID: 27599382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Oxide/Chitosan/Hydroxyapatite Composite Membranes Enhance Osteoblast Adhesion and Guided Bone Regeneration.
    Liu S; Li Z; Wang Q; Han J; Wang W; Li S; Liu H; Guo S; Zhang J; Ge K; Zhou G
    ACS Appl Bio Mater; 2021 Nov; 4(11):8049-8059. PubMed ID: 35006786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering.
    Katti KS; Katti DR; Dash R
    Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold.
    Shuai C; Peng B; Feng P; Yu L; Lai R; Min A
    J Adv Res; 2022 Jan; 35():13-24. PubMed ID: 35024192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ syntheses of hydroxyapatite-grafted graphene oxide composites.
    Iacoboni I; Perrozzi F; Macera L; Taglieri G; Ottaviano L; Fioravanti G
    J Biomed Mater Res A; 2019 Sep; 107(9):2026-2039. PubMed ID: 31077552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites.
    Mehrali M; Moghaddam E; Shirazi SF; Baradaran S; Mehrali M; Latibari ST; Metselaar HS; Kadri NA; Zandi K; Osman NA
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3947-62. PubMed ID: 24588873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of hydroxyapatite self-assembled nanocomposites on graphene oxide sheets from seashell waste: A green process for regenerative medicine.
    Sampath V; Krishnasamy V
    J Mech Behav Biomed Mater; 2024 Mar; 151():106383. PubMed ID: 38218046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotube-reinforced hydroxyapatite composite and their interaction with human osteoblast in vitro.
    Khalid P; Hussain MA; Rekha PD; Arun AB
    Hum Exp Toxicol; 2015 May; 34(5):548-56. PubMed ID: 25233896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactivity in in situ hydroxyapatite-polycaprolactone composites.
    Verma D; Katti K; Katti D
    J Biomed Mater Res A; 2006 Sep; 78(4):772-80. PubMed ID: 16739180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical properties of nanocomposite: Hydroxyapatite in reduced graphene oxide.
    Rajesh A; Mangamma G; Sairam TN; Subramanian S; Kalavathi S; Kamruddin M; Dash S
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():203-210. PubMed ID: 28482518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced bone regeneration with carbon nanotube reinforced hydroxyapatite in animal model.
    Mukherjee S; Nandi SK; Kundu B; Chanda A; Sen S; Das PK
    J Mech Behav Biomed Mater; 2016 Jul; 60():243-255. PubMed ID: 26907099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement.
    Gonçalves G; Cruz SM; Ramalho A; Grácio J; Marques PA
    Nanoscale; 2012 Apr; 4(9):2937-45. PubMed ID: 22499394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite-polyetheretherketone scaffolds.
    Feng P; Peng S; Wu P; Gao C; Huang W; Deng Y; Xiao T; Shuai C
    Int J Nanomedicine; 2016; 11():3487-500. PubMed ID: 27555770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.