These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 33618301)
1. Technogenic magnetic particles from steel metallurgy and iron mining in topsoil: Indicative characteristic by magnetic parameters and Mössbauer spectra. Magiera T; Górka-Kostrubiec B; Szumiata T; Wawer M Sci Total Environ; 2021 Jun; 775():145605. PubMed ID: 33618301 [TBL] [Abstract][Full Text] [Related]
2. Technogenic magnetic particles in topsoil: Characteristic features for different emission sources. Magiera T; Górka-Kostrubiec B; Szumiata T; Bućko MS Sci Total Environ; 2023 Mar; 865():161186. PubMed ID: 36581291 [TBL] [Abstract][Full Text] [Related]
3. Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons. Rachwał M; Magiera T; Wawer M Chemosphere; 2015 Nov; 138():863-73. PubMed ID: 25576132 [TBL] [Abstract][Full Text] [Related]
4. Technogenic Magnetic Particles in Alkaline Dusts from Power and Cement Plants. Magiera T; Gołuchowska B; Jabłońska M Water Air Soil Pollut; 2013 Jan; 224(1):1389. PubMed ID: 23325986 [TBL] [Abstract][Full Text] [Related]
5. Multiscale correlations of iron phases and heavy metals in technogenic magnetic particles from contaminated soils. Yu X; Lu S Environ Pollut; 2016 Dec; 219():19-27. PubMed ID: 27661724 [TBL] [Abstract][Full Text] [Related]
6. Application of Mössbauer Spectroscopy for Identification of Iron-Containing Components in Upper Silesian Topsoil Being under Industrial Anthropopressure. Kierlik P; Hanc-Kuczkowska A; Rachwał M; Męczyński R; Matuła I Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33217979 [TBL] [Abstract][Full Text] [Related]
7. Technogenic magnetic particles in soils as evidence of historical mining and smelting activity: A case of the Brynica River Valley, Poland. Magiera T; Mendakiewicz M; Szuszkiewicz M; Jabłońska M; Chróst L Sci Total Environ; 2016 Oct; 566-567():536-551. PubMed ID: 27236619 [TBL] [Abstract][Full Text] [Related]
8. Magnetic properties, microstructure and mineralogical phases of technogenic magnetic particles (TMPs) in urban soils: Their source identification and environmental implications. Lu S; Yu X; Chen Y Sci Total Environ; 2016 Feb; 543(Pt A):239-247. PubMed ID: 26588801 [TBL] [Abstract][Full Text] [Related]
9. Impact of an iron mine and a nickel smelter at the Norwegian/Russian border close to the Barents Sea on surface soil magnetic susceptibility and content of potentially toxic elements. Magiera T; Zawadzki J; Szuszkiewicz M; Fabijańczyk P; Steinnes E; Fabian K; Miszczak E Chemosphere; 2018 Mar; 195():48-62. PubMed ID: 29253789 [TBL] [Abstract][Full Text] [Related]
10. Isolation of technogenic magnetic particles. Catinon M; Ayrault S; Boudouma O; Bordier L; Agnello G; Reynaud S; Tissut M Sci Total Environ; 2014 Mar; 475():39-47. PubMed ID: 24419285 [TBL] [Abstract][Full Text] [Related]
11. Application of magnetic methods for assessment of soil restoration in the vicinity of metallurgical copper-processing plant in Bulgaria. Jordanova N; Petrovský E; Kapicka A; Jordanova D; Petrov P Environ Monit Assess; 2017 Apr; 189(4):158. PubMed ID: 28285437 [TBL] [Abstract][Full Text] [Related]
12. Comment on Kierlik et al. Application of Mössbauer Spectroscopy for Identification of Iron-Containing Components in Upper Silesian Topsoil Being under Industrial Anthropopressure. Nayak PK Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955149 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional model of magnetic susceptibility in forest topsoil: An indirect method to discriminate contaminant migration. Łukasik A; Szuszkiewicz M; Wanic T; Gruba P Environ Pollut; 2021 Jan; 273():116491. PubMed ID: 33493765 [TBL] [Abstract][Full Text] [Related]
14. Source apportionment of soil-contamination in Baotou City (North China) based on a combined magnetic and geochemical approach. Wang B; Xia D; Yu Y; Chen H; Jia J Sci Total Environ; 2018 Nov; 642():95-104. PubMed ID: 29894886 [TBL] [Abstract][Full Text] [Related]
15. Combination of geo- pedo- and technogenic magnetic and geochemical signals in soil profiles - Diversification and its interpretation: A new approach. Szuszkiewicz M; Łukasik A; Magiera T; Mendakiewicz M Environ Pollut; 2016 Jul; 214():464-477. PubMed ID: 27112729 [TBL] [Abstract][Full Text] [Related]
16. Study of Iron oxide nanoparticles using Mössbauer spectroscopy with a high velocity resolution. Oshtrakh MI; Ushakov MV; Šepelák V; Semionkin VA; Morais PC Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():666-79. PubMed ID: 26105556 [TBL] [Abstract][Full Text] [Related]
17. Detecting the sensitivity of magnetic response on different pollution sources--A case study from typical mining cities in northwestern China. Wang B; Xia D; Yu Y; Jia J; Nie Y; Wang X Environ Pollut; 2015 Dec; 207():288-98. PubMed ID: 26412269 [TBL] [Abstract][Full Text] [Related]
18. Ferruginous compounds in the airborne particulate matter of the metropolitan area of Belo Horizonte, Minas Gerais, Brazil. Tavares FVF; Ardisson JD; Rodrigues PCH; Fabris JD; Fernandez-Outon LE; Feliciano VMD Environ Sci Pollut Res Int; 2017 Aug; 24(24):19683-19692. PubMed ID: 28685326 [TBL] [Abstract][Full Text] [Related]
19. Magnetic study of a mixture of magnetite and metallic iron in indoor dust samples. Górka-Kostrubiec B; Szczepaniak-Wnuk I Air Qual Atmos Health; 2017; 10(1):105-116. PubMed ID: 28111597 [TBL] [Abstract][Full Text] [Related]
20. Preparation of nanometer-sized black iron oxide pigment by recycling of blast furnace flue dust. Shen L; Qiao Y; Guo Y; Tan J J Hazard Mater; 2010 May; 177(1-3):495-500. PubMed ID: 20064689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]