These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33618323)

  • 1. Real effluents and fractionation in the supply of COD: Rapid adaptation and high efficiency to treat mine drainage combined with industrial by-products.
    Vieira BF; Rodriguez RP; Coutinho de Paula E; Simões GF
    J Environ Manage; 2021 May; 286():112114. PubMed ID: 33618323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term performance of a UASB reactor treating acid mine drainage: effects of sulfate loading rate, hydraulic retention time, and COD/SO
    Cunha MP; Ferraz RM; Sancinetti GP; Rodriguez RP
    Biodegradation; 2019 Feb; 30(1):47-58. PubMed ID: 30406872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of acidic pH and presence of metals as parameters in establishing a sulfidogenic process in anaerobic reactor.
    Vieira BF; Couto PT; Sancinetti GP; Klein B; van Zyl D; Rodriguez RP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Aug; 51(10):793-7. PubMed ID: 27222283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological sulfate removal from acrylic fiber manufacturing wastewater using a two-stage UASB reactor.
    Li J; Wang J; Luan Z; Ji Z; Yu L
    J Environ Sci (China); 2012; 24(2):343-50. PubMed ID: 22655398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.
    Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E
    J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfidogenic fluidized bed treatment of real acid mine drainage water.
    Sahinkaya E; Gunes FM; Ucar D; Kaksonen AH
    Bioresour Technol; 2011 Jan; 102(2):683-9. PubMed ID: 20832297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of COD/SO
    Silva AFR; Magalhães NC; Cunha PVM; Amaral MCS; Koch K
    J Environ Manage; 2020 Apr; 259():110034. PubMed ID: 31932266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor.
    Liu Z; Li L; Li Z; Tian X
    Environ Technol; 2018 Jul; 39(14):1814-1822. PubMed ID: 28592226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfate and metals removal from acid mine drainage in a horizontal anaerobic immobilized biomass (HAIB) reactor.
    Braga JK; de Melo Júnior OM; Rodriguez RP; Sancinetti GP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(12):1436-1449. PubMed ID: 32812506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfidogenesis interference on methane production from carbohydrate-rich wastewater.
    Godoi LA; Damianovic MH; Foresti E
    Water Sci Technol; 2015; 72(9):1644-52. PubMed ID: 26524457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the degradation of sulfate rich wastewater using sweetmeat waste (SMW) as nutrient supplement.
    Das BK; Roy S; Dev S; Das D; Bhattacharya J
    J Hazard Mater; 2015 Dec; 300():796-807. PubMed ID: 26322967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. COD/sulfate ratio does not affect the methane yield and microbial diversity in anaerobic digesters.
    Cetecioglu Z; Dolfing J; Taylor J; Purdy KJ; Eyice Ö
    Water Res; 2019 May; 155():444-454. PubMed ID: 30861382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High rate of biological removal of sulfate, organic matter, and metals in UASB reactor to treat synthetic acid mine drainage and cheese whey wastewater as carbon source.
    Sampaio GF; Dos Santos AM; da Costa PR; Rodriguez RP; Sancinetti GP
    Water Environ Res; 2020 Feb; 92(2):245-254. PubMed ID: 31472092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Down-flow fixed-structured bed reactor: An innovative reactor configuration applied to acid mine drainage treatment and metal recovery.
    Godoi LAG; Foresti E; Damianovic MHRZ
    J Environ Manage; 2017 Jul; 197():597-604. PubMed ID: 28431372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of biological sulfate reduction conditions for sulfidogenesis promotion using a methanogenic granular sludge.
    Mora M; Lafuente J; Gabriel D
    Chemosphere; 2018 Nov; 210():557-566. PubMed ID: 30029148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreasing lactate input for cost-effective sulfidogenic metal removal in sulfate-rich effluents: Mechanistic insights from (bio)chemical kinetics to microbiome response.
    Yang Z; Ji N; Huang J; Wang J; Drewniak L; Yin H; Hu C; Zhan Y; Yang Z; Zeng L; Liu Z
    Chemosphere; 2023 Jul; 330():138662. PubMed ID: 37044147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removing organic matter from sulfate-rich wastewater via sulfidogenic and methanogenic pathways.
    Vilela RS; Damianovic MH; Foresti E
    Water Sci Technol; 2014; 69(8):1669-75. PubMed ID: 24759527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of influent COD/SO4(2-) ratios on UASB treatment of a synthetic sulfate-containing wastewater.
    Hu Y; Jing Z; Sudo Y; Niu Q; Du J; Wu J; Li YY
    Chemosphere; 2015 Jul; 130():24-33. PubMed ID: 25747303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.