These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 33618466)
21. New insights on mercury abatement and modeling in a full-scale municipal solid waste incineration flue gas treatment unit. Romero LM; Lyczko N; Nzihou A; Antonini G; Moreau E; Richardeau H; Coste C; Madoui S; Durécu S Waste Manag; 2020 Jul; 113():270-279. PubMed ID: 32559697 [TBL] [Abstract][Full Text] [Related]
22. On-line analysis of the size distribution of fine and ultrafine aerosol particles in flue and stack gas of a municipal waste incineration plant: effects of dynamic process control measures and emission reduction devices. Maguhn J; Karg E; Kettrup A; Zimmermann R Environ Sci Technol; 2003 Oct; 37(20):4761-70. PubMed ID: 14594389 [TBL] [Abstract][Full Text] [Related]
23. Effect of HCl on a sorption of mercury from flue gas evolved during incineration of hospital waste using entrained flow adsorbers. Szeliga Z; Honus S; Vavrova Z; Jirsa P; Vesely V; Carsky M; Vujanovic M; Regucki P; Krzyzynska R Waste Manag; 2022 Mar; 140():74-80. PubMed ID: 35066454 [TBL] [Abstract][Full Text] [Related]
24. Emission characteristics of polychlorinated, polybrominated and mixed polybrominated/chlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, PBDD/Fs, and PBCDD/Fs) from waste incineration and metallurgical processes in China. Song S; Zhou X; Guo C; Zhang H; Zeng T; Xie Y; Liu J; Zhu C; Sun X Ecotoxicol Environ Saf; 2019 Nov; 184():109608. PubMed ID: 31505407 [TBL] [Abstract][Full Text] [Related]
25. Experimental assessment of an indirect method to measure the post-combustion flue gas flow rate in waste-to-energy plant based on multi-point measurements. Bellani G; Lazzarini L; Dal Pozzo A; Moretti S; Zattini M; Cozzani V; Talamelli A Waste Manag; 2023 Feb; 157():91-99. PubMed ID: 36527779 [TBL] [Abstract][Full Text] [Related]
26. Fate of selenium in coal combustion: volatilization and speciation in the flue gas. Yan R; Gauthier D; Flamant G; Peraudeau G; Lu J; Zheng C Environ Sci Technol; 2001 Apr; 35(7):1406-10. PubMed ID: 11348075 [TBL] [Abstract][Full Text] [Related]
27. Characterization of PCDD/Fs and dioxin-like PCBs in flue gas from thermal industrial processes in Vietnam: A comprehensive investigation on emission profiles and levels. Pham MTN; Anh HQ; Nghiem XT; Tu BM; Dao TN; Nguyen MH Chemosphere; 2019 Jun; 225():238-246. PubMed ID: 30877918 [TBL] [Abstract][Full Text] [Related]
28. Combined simulation of combustion and gas flow in a grate-type incinerator. Ryu C; Shin D; Choi S J Air Waste Manag Assoc; 2002 Feb; 52(2):189-97. PubMed ID: 15143794 [TBL] [Abstract][Full Text] [Related]
29. Chemical inhibition of PCDD/F formation in incineration processes. Ruokojärvi PH; Asikainen AH; Tuppurainen KA; Ruuskanen J Sci Total Environ; 2004 Jun; 325(1-3):83-94. PubMed ID: 15144780 [TBL] [Abstract][Full Text] [Related]
31. Polycyclic aromatic hydrocarbons (PAHs) and estrogenic compounds in experimental flue gas streams. Muthumbi W; De Boever P; Pieters JG; Siciliano S; D'Hooge W; Verstraete W J Environ Qual; 2003; 32(2):417-22. PubMed ID: 12708663 [TBL] [Abstract][Full Text] [Related]
32. Investigation of gaseous and solid pollutants emitted from waste tire combustion at different temperatures. Mentes D; Tóth CE; Nagy G; Muránszky G; Póliska C Waste Manag; 2022 Jul; 149():302-312. PubMed ID: 35760016 [TBL] [Abstract][Full Text] [Related]
33. Experimental investigation of removal of flue gas emissions exhaust from municipal solid waste incinerator using photovoltaic-based electrostatic precipitator. Pannerselvam A; Kuppusamy MS; Shanmugapriyan J; Kaliappan VK; Sathyamurthy R Environ Sci Pollut Res Int; 2022 Feb; 29(8):11209-11218. PubMed ID: 34532790 [TBL] [Abstract][Full Text] [Related]
34. Converting moving-grate incineration from combustion to gasification - numerical simulation of the burning characteristics. Yang YB; Sharifi VN; Swithenbank J Waste Manag; 2007; 27(5):645-55. PubMed ID: 16730435 [TBL] [Abstract][Full Text] [Related]
35. Emissions investigation for a novel medical waste incinerator. Xie R; Li WJ; Li J; Wu BL; Yi JQ J Hazard Mater; 2009 Jul; 166(1):365-71. PubMed ID: 19111396 [TBL] [Abstract][Full Text] [Related]
36. Metal partitioning in products of incineration of municipal solid waste. Thipse SS; Dreizin EL Chemosphere; 2002 Feb; 46(6):837-49. PubMed ID: 11922064 [TBL] [Abstract][Full Text] [Related]
37. Assessment of emissions and removal of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) at start-up periods in a hazardous waste incinerator. Karademir A; Korucu MK J Air Waste Manag Assoc; 2013 Jul; 63(7):788-95. PubMed ID: 23926848 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of PCDD/F congener partition in vapor/solid phases of waste incinerator flue gases. Chi KH; Chang MB Environ Sci Technol; 2005 Oct; 39(20):8023-31. PubMed ID: 16295870 [TBL] [Abstract][Full Text] [Related]
39. Comparing the greenhouse gas emissions from three alternative waste combustion concepts. Vainikka P; Tsupari E; Sipilä K; Hupa M Waste Manag; 2012 Mar; 32(3):426-37. PubMed ID: 22079250 [TBL] [Abstract][Full Text] [Related]
40. Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal. Ortuño N; Conesa JA; Moltó J; Font R Sci Total Environ; 2014 Nov; 499():27-35. PubMed ID: 25173859 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]